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Abstract – This paper describes a Micro-Aerial Vehi-
cle (MAV) intended for the visual inspection of cargo
holds, whose development, among others, takes place
within the context of the EU-funded H2020 project
ROBINS, with the purpose of making ship inspections
safer and more cost-efficient. To this end, the vehicle is
equipped with specific sensors that are to permit tele-
porting the surveyor to the areas that need inspection,
while the focus of the control software is on provid-
ing enhanced functionality and autonomy for the in-
spection processes. All this has been accomplished in
the context of the supervised autonomy paradigm, by
means of the definition of different autonomy levels and
functionalities (including obstacle detection and colli-
sion prevention), and extensive use of behaviour-based
high-level control, all intended for visual inspection as
already mentioned. Automatic detection of defects is
also addressed as part of ROBINS goals, through the
adoption of deep learning approaches for enhanced
performance. Results for some experiments conducted
to assess the different functionalities are reported at the
corresponding sections of the paper.

I. INTRODUCTION

The movement of goods by vessels is today one of

the most time- and cost-effective ways of transportation.

Nowadays, the demand for maritime transport services is

dealt by large-tonnage vessels specific for the kind of prod-

uct to freight, namely oil tankers, bulk carriers, and general

cargo or container ships, to name but a few. As any other

installation or infrastructure, this type of vessels requires

regular maintenance to avoid its deterioration due to a var-

ied set of causes, ranging from design mistakes, use of

sub-standard materials or procedures, structural overload

or normal decaying of the metallic structures in the sea.

Otherwise, accidents can result, with maybe catastrophic

consequences for the crew (and passengers), environmen-

tal pollution or damage and/or total loss of the ship, its

equipment and its cargo.

The inspection of those ship-board structures by hu-
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mans is a time-consuming, expensive and commonly haz-

ardous activity, which may cause damage to coating, cre-

ating the need to search for alternative solutions. Simul-

taneously, the need for broader and intensified data ac-

quisition grows to provide a better basis for refined con-

dition assessment. In line with the aforementioned, the

EU-funded FP7 projects MINOAS (finished on 2012) and

INCASS (finished on 2017) had among their main goals

the development of robotic devices to assist and simplify

the inspection of different vessels areas. As a follow-up,

the EU-funded H2020 project ROBINS (started in 2018,

https://www.robins-project.eu/) aims at fill-

ing the technology and regulatory gaps that today still

represent a barrier to the adoption of Robotics and Au-

tonomous Systems (RAS) in activities related to the in-

spection of ships, starting from understanding end-user’s

actual needs and expectations as well as analyzing how ex-

isting or near-future technology can meet them.

On the technological side, ROBINS intends to: (1) en-

hance the capabilities of RAS as for navigation and local-

ization, access to and mobility within the environment, as

well as improve their ability regarding sensing and prob-

ing, to increase the TRL attained within the frameworks of

the previous projects; and (2) provide new tools for pro-

cessing images and data collected by sensors, aiming at

(a) the generation of 3D models that permit teleporting the

surveyor to the areas of interest (by means of e.g. virtual

tours) and (b) highlighting defects in collected images.

On the normative side, and concerning the regulatory

aspects relevant to the use of RAS in ship inspection,

ROBINS has the following objectives: (1) define criteria,

testing procedures and metrics for the evaluation of RAS

performance in terms of safety, functionality, dependabil-

ity, security, data quality and economic viability; (2) de-

sign, implement and assess a Testing Facility (TF) where

repeatable tests and measurements can be performed for

the evaluation of the compliance between RAS and the

requirements; and (3) provide a framework to assess the

equivalence between the outcomes of RAS-assisted ship

inspections and traditional inspection procedures. The pos-

sibility to replace, or at least reduce, field trials by means

of equivalent test protocols carried out in the TF is one of

the key concepts in ROBINS, and comes from the consid-

eration that field trials on board ships are generally very
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Fig. 1. (left) Staging required during a vessel inspection.
(right) Oil tanker in shipyard during construction.

difficult to be arranged, can be quite expensive and usually

cannot be executed in controlled and reproducible testing

conditions, what constitute severe limitations for the de-

velopment of RAS platforms for ship inspection. Despite

the aforementioned, field trials are not to be suppressed,

but, to the contrary, are to provide feedback to revise the

testing protocols and the TF itself, thus creating an iter-

ative refining process that converges to a TF relevant for

the assessment of RAS for ship inspection. (For additional

details about the TF, the reader is referred to [1].)

Cargo holds and cargo tanks is one of the types of op-

erational scenarios which is considered by the ROBINS

project, as representative of the different environments

where costs and risks connected to inspection activities are

more significant: wide volumes with significant heights,

characteristic of bulk carriers, container ships, tankers, and

general cargos holds, which require costly access means

to reach high points, while large unobstructed heights be-

tween levels imply severe consequences for the safety of

surveyors. In these environments, inspections are actu-

ally carried out mainly by means of scaffolding, portable

ladders, and cherry pickers (see Fig. 1). This paper de-

scribes recent progress achieved within the context of

project ROBINS as for the development of an aerial plat-

form specifically devised for the collection of inspection

data from vessels’ wide spaces, such as cargo holds, fo-

cusing on fitting the robot with enhanced autonomy func-

tionalities for those particular areas. Besides, we also con-

tribute with new visual methods for defect detection in im-

ages. After a first year since the project start in 2018, a

first almost-complete version of the platform is available at

both the hardware and software levels, together with soft-

ware modules for processing the collected inspection data,

e.g. for 3D reconstruction and defect detection. Advances

in some of these different sides of the project are reported

along the next sections of the paper.

II. AERIAL PLATFORM

Among others, the vertical structures that can be found

in vessel holds are of prime importance. To make proper

repair/no repair decisions, the surveyor must be provided

with, among others, imagery detailed enough so as to en-

able the remote visual assessment of these structures. To

this end, the platform can be either required to sweep the

relevant metallic surfaces and grab pictures at a rate com-

patible with its speed, or else provide visual evidence of

the state of a particular area suspected of being defective.

Those images must as well be tagged with pose informa-

tion, so that the areas suspected of being defective can be

located on the vessel structure, or even for comparing im-

ages across inspections.

Therefore, the main requirements for the aerial platform

stem directly from the very nature of the inspection pro-

cess: the vehicle must be able to perform vertical, station-

ary and low speed flight, as well as permit indoor flight.

These requirements rapidly discard fixed-wing aircrafts

and focus the search on helicopter-type UAVs, naturally

capable of manoeuvres such as hovering and vertical take-
off and landing (VTOL). Additionally, the platform should

not only rely on GPS data for positioning, because it could

be required to operate indoors or in poor GPS reception

areas (e.g. due to satellites being occluded by the vessel

structures, multi-path effects, etc.)

Because of their fast deployment times and convenient

size, a number of recent works have considered the use

of multirotor-based Micro-Aerial Vehicles (MAVs) within

the context of the inspection and monitoring of indus-

trial facilities and assets, for data collection at remote or

safety-compromised areas, difficult to reach by humans

and ground vehicles, and with large areas to be covered

as fast as possible [2, 3, 4]. The popularity these vehicles

have gained in recent years has lead to the availability of

a number of control and navigation solutions. They differ

mainly in the sensors used to solve the navigation tasks,

the amount of processing that is performed onboard/off-

board, and the assumptions made about the environment.

Apart from other devices, such as infrared and ultrasound

sensors, laser scanners [5] and, lately, vision cameras [6]

have become the preferred sensor modalities to undertake

these tasks, mostly within Simultaneous Localization and

Mapping (SLAM) frameworks and combined with Inertial

Measuring Units (IMU).

A. Platform Overview
Our aerial platform is based on a multi-rotor design fit-

ted with (1) a Flight Management Unit (FMU) for platform

stabilization in roll, pitch and yaw, as well as thrust control,

(2) a 3-axis IMU —which, according to today standards, is

typically part of the FMU—, (3) a sensor suite able to sup-

ply vehicle 3D speed and height measurements, as well as

distances to surrounding obstacles, (4) inspection sensors

and (5) an embedded PC which avoids sending sensor data

to a base station, but process them onboard and, thus, pre-

vent communications latency inside critical control loops.

Figure 2 shows a realization of this platform taking as a

basis the Matrice 100 quadrotor by DJI.

To be more precise, apart from the FMU, the realization
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Fig. 2. ROBINS aerial platform, fitted with a laser scanner,
a height sensor, a camera set feturing LED-based illumi-
nation, and an embedded PC.

of Fig. 2 features: (a) the lightweight laser scanner Hokuyo

UST-20LX, which provides 20 meters coverage for a 270◦

angular sector, which is used to estimate 2D speed as well

as distances to the surrounding obstacles; (b) a downward-

looking LIDAR-Lite v3 laser range finder used to supply

height data for a maximum range of 40 meters; (c) two

cameras to collect, from the vessel structures under inspec-

tion, RGB-D images on demand (Intel Realsense D435i

camera) and video footage (Zenmuse X3 mounted on a

gimbal); (d) two 7W DC20-24V pure white LEDs, sup-

plying 2×700 lumen for a 140◦ beam angle; and (e) an

Intel NUC7I7BNH embedded PC featuring an Intel Core

i7-7567U 2×3.5GHz processor and 16 GB RAM.

Apart from other sensor suites capable of also supplying

speed and height measurements, the previous configuration

allows navigation under low-light conditions, as required

in certain vessel compartments such as e.g. oil tanker cargo

holds, for which a single manhole-sized entry point is typi-

cally available (see Fig. 3). Further, the LED-based system

is intended to facilitate the capture of useful images despite

the absence of ambient lighting. Thanks to a specific power

system, they can be remotely dimmed from the embedded

PC to adjust to the available illumination and the operating

distance to the walls during flight.

B. Control Architecture
From a control viewpoint, the aerial platform imple-

ments a control architecture that follows the Supervised

Autonomy (SA) paradigm [7]. This is a human-robot

framework where the robot implements a number of au-

tonomous functions, including self-preservation and other

safety-related issues, which make simpler the intended op-

erations for the user, so that the operator, which is al-

lowed to be within the general platform control loop, can

Fig. 3. (left) Oil tanker manhole entry point. (right) Typi-
cal oil tanker cargo hold.

focus in accomplishing the task at hand. Within this

framework, the communication between the robot and the

user is performed via qualitative instructions and expla-

nations: the user prescribes high-level instructions to the

platform through an adequate Human Interaction Device

(HID) while the robot provides instructive feedback.

In our case, qualitative commands can be issued through

both a Radio Controller (R/C) and a gamepad, as well as

from the input side of the Graphical User Interface (GUI),

while the robot feedback is handled from the output side of

the GUI. While the platform is taking care of attitude stabi-

lization, speed and height control, as well as prevents col-

lisions, the user is only required to issue simple/qualitative

commands related to the inspection operation, such as go

up, go down, go left, go right, advance in a certain direc-

tion, etc.

The architecture comprises two separate agents: the

MAV and the Base Station (BS). All the state estima-

tion and control algorithms run over the computational

resources of the MAV: as usual, the FMU runs low-

level control tasks —attitude stabilization and direct mo-

tor control—, while the embedded PC executes, on top

of the Robot Operating System (ROS) running over Linux

Ubuntu, high-rate ROS nodes that (1) implement mid-level

control tasks —height and speed controllers—, and (2)

estimate velocity and height, as well as the distances to

the closest obstacles surrounding the platform. Lower-rate

top-level control also runs over this processor in the form

of a number of different behaviours that implement the

higher level autonomous functionalities of the platform.

These behaviours combine the user desired speed com-

mand with the available sensor data, to obtain final and

safe speed and height set-points that are sent to, respec-

tively, the speed and height controllers.

The BS mainly runs the GUI used to supply the operator

with information about the state of the platform as well

as about the task in execution, e.g. images collected via

the vision system attached to the platform. It runs ROS

over Linux Ubuntu and is linked with the MAV via DJI

Lightbridge and 5 GHz WiFi connections. The qualitative

user commands and the robot feedback travel, respectively,

forth and back through them.

223



Fig. 4. Example of paths which are to be followed by the
MAV to ensure an adequate level of coverage of the struc-
ture under inspection.

The MAV control software has been designed around

open-source components and following modularity and

software reutilization principles. In this way, adapting the

framework for different platforms involving different pay-

loads, or the selective activation of software modules, can

be performed in a fast and reliable way.

C. Inspection Data Collection Capabilities
During flight, the aerial platform is intended to collect

inspection data on demand or at a fixed rate, e.g. 10 fps,

as well as log flight data. Regarding the latter, the vehicle

pose, i.e. 3D position and 3D attitude, as well as the dis-

tance to inspected surfaces become of particular relevance

here in order to be able to associate 3D position and scale

information to the data collected and ultimately to the de-

fects found after processing the images gathered. Besides,

as an additional functionality during inspection missions,

we aim at ensuring proper surface coverage in order to

supply the surveyor with complete information about the

surface under inspection, e.g. a bulkhead. This is also to

contribute in an effective way to the 3D reconstruction of

the area from the visual data collected (as well as other data

modalities). To implement the aforementioned functional-

ities, the platform not only needs to estimate its speed but

also its position, as well as it has to plan its motion to prop-

erly cover the areas of interest. Figure 4 illustrates the type

of coverage which is expected, while Fig. 6 shows exam-

ples of sweeping flights and the 3D map resulting from one

these flights.

D. Results from Field Trials
This section reports on a number of inspection missions

performed during first field trials taking place onboard a

12.000 DWT Ro-Ro Cargo vessel while at drydock at the

end of March 2019. Tests were performed at the Main

Deck cargo hold (first day) and at the TankTop cargo hold

(second day), both dry spaces of the vessel. It was a rather

new vessel, built in 2012, which was in good condition, but

served as a successful test bench for the different function-

alities of the aerial platform. Thanks to the design of the

base station and the vehicle, deployment times were about

5 minutes. Images from the field trials and plots for some

of the flights are shown in Fig. 6.

III. DEFECT DETECTION

Steel surfaces can be affected by different kinds of

defective situations, being coating breakdown/corrosion

(CBC), in any of its different forms, the most common de-

fect. As already mentioned, an early detection prevents

vessel structures from suffering major damage which can

ultimately compromise their integrity. ROBINS aim in this

regard is to simplify visual inspection processes by means

of tools for conveniently visualizing the inspection data

collected, as well as by detecting and highlighting poten-

tial defects so as to draw the attention of the surveyor to

relevant points of the hold under inspection.

To counteract complex lighting conditions and a great

diversity of other conditions due to data obtained from

possibly different robots, ROBINS approach for defect

detection adopts Deep Convolutional Neural Networks

(DCNN)-based methodologies as highly robust machine-

learning approaches. As already known, recently DCNNs

have already showed good results for object recognition in

images [8], although what is most interesting is the fact that

they have been shown highly promising for industrial in-

spection applications [9]. In contrast to manually designed

image processing solutions, DCNNs automatically gener-

ate powerful features, i.e. learn the representation, from

training data by means of hierarchical learning strategies

with a minimum of human interaction or expert process

knowledge.

In more detail, in this section we report on detection re-

sults for pixel-level CBC detectors based on deep learn-

ing semantic segmentation through a fully convolutional

neural network (FCN) trained end-to-end. These networks

learn and predict dense outputs from a whole-image-at-

a-time by dense backpropagation/feedforward computa-

tion [10]. As part of the fine-tuning of the detector for

the problem at hand, we have considered the FCN-8s ar-

chitecture described by [11]. Due to their characteristics,

our configuration allows the detector to find both large and

small image areas affected by CBC, typically correspond-

ing to, respectively, general corrosion and pitting. Table 1

and Fig. 5 show successful CBC detection results using

the Focal Loss (FL) function [12] to train the detector.

Performance is measured in terms of standard metrics for

semantic segmentation solutions, such as pixel accuracy
(PA), mean accuracy (MA), mean region intersection over
union (mIU) and frequency weighted IU (fwIU), as well as

through the traditional precision (P) and recall (R) values.

IV. CONCLUSIONS

A Micro-Aerial Vehicle to be used for vessel visual in-

spection of vessel cargo holds has been described. The

MAV control approach is based on the SA paradigm,
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Fig. 5. Results of the corrosion detector: (1st row) original image, (2nd row) results superimposed in green.

Table 1. Detection performance of the corrosion detector.

PA MA mIU fwIU P R

FL 0.95 0.87 0.83 0.90 0.95 0.83

and hence the user is introduced in the platform control

loop. For the specific problem of visual inspection, a

behaviour-based control architecture tightly linked to the

SA paradigm, including aspects such as vehicle state es-

timation, behaviour-based command generation and flight

control, has been outlined. Results from first field trials,

regarding control architecture validity and usefulness for

visual inspection, have been reported. Furthermore, a deep

learning-based CBC detector has been discussed and some

experimental results shown.
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Fig. 6. Field trials: (1st row) Ro-Ro vessel, Main Deck cargo hold, and TankTop cargo hold; (2nd row) base station and
images of the platform during inspection flights; (3rd/4th row) estimated paths for different sweeping flights in the cargo
holds; (5th row) 3D map for one of the flights [path of the MAV shown in red].

226


