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Abstract: Vessel maintenance requires periodic visual inspection of the hull in order to detect typical
defective situations of steel structures such as, among others, coating breakdown and corrosion.
These inspections are typically performed by well-trained surveyors at great cost because of the need
for providing access means (e.g., scaffolding and/or cherry pickers) that allow the inspector to be at
arm’s reach from the structure under inspection. This paper describes a defect detection approach
comprising a micro-aerial vehicle which is used to collect images from the surfaces under inspection,
particularly focusing on remote areas where the surveyor has no visual access, and a coating
breakdown/corrosion detector based on a three-layer feed-forward artificial neural network. As it is
discussed in the paper, the success of the inspection process depends not only on the defect detection
software but also on a number of assistance functions provided by the control architecture of the
aerial platform, whose aim is to improve picture quality. Both aspects of the work are described along
the different sections of the paper, as well as the classification performance attained.

Keywords: vessel inspection; defect detection; unmanned aerial vehicle; supervised autonomy;
machine learning; artificial neural network

1. Introduction

The different steel surfaces that are part of a vessel’s hull can be affected by different kinds of
defective situations, such as coating breakdown, corrosion, and, ultimately, cracks. These defects are
indicators of the state of the metallic surface and, as such, an early detection prevents the structure
from buckling or fracturing, and, ultimately, the personal, environmental and financial catastrophic
consequences this can give rise to. To avoid reaching such undesirable situations, inspections onboard
sea-going vessels are regular activities being initiated partly due to applicable classification and
statutory regulations, and partly because of the obvious interest of ship operators and ship owners
in anticipating the defective situations, for safety reasons but also because of the costs associated to
unexpected disruptions of vessel service availability.

To carry out this task, the vessel has to be emptied and situated in a dockyard where scaffolding
and/or cherry-pickers must be used to allow the human inspectors to reach the areas under inspection.
For some vessels (e.g., Ultra Large Crude Carriers, ULCC), this process can mean the visual assessment
of more than 600,000 m2 of steel. Total expenses required for this kind of close-up inspection can reach
up to $1M once you factor in the use of yard’s facilities and the vessel’s preparation, i.e., cleaning,
ventilation, and provision of access arrangements. Consequently, since visual inspections are and
will be an important source of information for structure condition assessment, it is clear that the
introduction of new technological tools will lead to significant reductions of the effort and costs related
to inspections.
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In this regard, one of the main goals of the already concluded EU FP7 project MINOAS [1] was to
develop a fleet of robotic platforms with different locomotion capabilities with the aim of teleporting
the human surveyor to the different vessel structures to be inspected. Given the enormity of these
structures and the requirement for vertical motion as part of the inspection process, a multi-rotor
platform belonging to the Micro-Aerial Vehicles (MAVs) class was selected as one of the members of the
fleet due to their small size, agility and fast deployment time (see the work by Bonnin-Pascual et al. [2]).
In accordance to some constructive advice from end-users at the end of project MINOAS (see the
work by Eich et al. [3]), this platform has been under re-design within the EU FP7 follow-up project
INCASS [4], a first version of which was described in Bonnin-Pascual et al. [5].

This paper presents a novel solution for detecting coating breakdown/corrosion (CBC) as
a support for surveyors during visual inspections of vessels. The solution here described
adopts an approach based on a semi-autonomous MAV fitted with functionalities intended to
enhance image capture by means of extensive use of behaviour-based high-level control, and an
artificial neural network (ANN) which discriminates between pixels suspected/not suspected to
correspond to CBC-affected areas by means of adequate colour and texture descriptors. A first version
of the neural network-based detector, employing different descriptors, was described in Ortiz et al. [6].
Here we present an enhanced network, which, in turn, has been submitted to more extensive testing.

By way of summary of this paper contributions: (1) we address defect detection in vessels
by means of an assistant robot; (2) we describe a control architecture specifically developed to
improve visual inspection and, by extension, image capture, to enhance subsequent processing steps
performance; (3) we propose new colour and texture descriptors for CBC detection; (4) we design the
classifier with the only restriction of being an ANN, in order not to miss any useful configuration of
the network, what means that, among others, we consider a number of different configurations of
the CBC descriptor varying the involved parameters, as well as alternative CBC descriptors; (5) we
evaluate the detector using a varied set of images taken under different conditions (hence irrespective
of the platform capabilities as for image capture); and (6) finally we report results for a set of images
taken during field trials, in a real vessel, which took place in recent dates, and using the particular
capabilities of the robot.

The rest of the paper is organized as follows: Section 2 describes the inspection problem and
outlines related work, Section 3 gives the details of the aerial platform, Section 4 outlines the defect
detection approach, Section 5 configures the CBC detector and reports on detection performance,
and, finally, Section 6 concludes the paper and outlines future work.

2. Background and Related Work

2.1. Inspection Problem and Platform Requirements

To perform a complete hull inspection, the vessel has to be emptied and situated in a dockyard,
where typically temporary staging, lifts, movable platforms, etc., need to be installed to allow the
workers to carry out close-up inspection—i.e., at the reach of a hand—of the different metallic surfaces
and structures. For those ships where there is a real cost saving, i.e., the inspection is likely to result in
no repair, so that the preparation of the vessel for a human inspection with a non-subsequent repair is
less justified (see the work by Ortiz et al. [7] for a deeper analysis), robotic platforms can replace the
in-situ human inspection.

Among others, the vertical structures that can be found in vessel holds are of prime importance
(see Figure 1). To make proper repair/no repair decisions, the surveyor must be provided with,
among others, imagery detailed enough so as to enable the remote visual assessment of these structures.
The INCASS aerial platform is precisely intended to provide this kind of data during and after
an inspection operation. To this end, the platform can be either required to sweep the relevant metallic
surfaces and grab pictures at a rate compatible with its speed, or else provide visual evidence of the
state of a particular area suspected of being defective. Those images must also be tagged with pose
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information, so that images suspected to contain defects can be associated to vessel structures, or even
be compared across inspections when they correspond to the same structural element.

Figure 1. (Left) Staging required during a vessel inspection; (Right) Oil tanker in shipyard
during construction.

Therefore, the main requirements for the aerial platform stem directly from the very nature of
the inspection process: the vehicle must be able to perform vertical, stationary and low speed flight,
as well as permit indoor flight. These requirements rapidly discard fixed-wing aircrafts and focus
the search on helicopter-type UAVs, naturally capable of manoeuvres such as hovering and vertical
take-off and landing (VTOL). Additionally, the platform should not rely on GPS data for positioning
because it could be required to operate indoors or in poor GPS reception areas (e.g., due to satellites
being occluded by the vessel structures, multi-path effects, etc.).

A final requirement comes from the end-users, which during the field trials at the end of the
preceding project MINOAS suggested the implementation of a friendly, flexible and robust way to
interact with the platform so that they could take the robot to any point of a cargo hold without
the need to be an expert pilot (instead of the approach based on way-point navigation adopted in
MINOAS [2,3], which required the specification of a precise list of points for each mission, what meant
an unnecessary rigidity when defining inspection operations).

2.2. Aerial Robots for Visual Inspection

Multi-rotor platforms have become increasingly popular in recent years, and, as a consequence,
a number of control and navigation solutions—including platform stabilization, self-localization,
mapping, and obstacle avoidance—can be found in the related literature. They mainly differ in the
navigation sensor suite, the amount of processing that is performed onboard/off-board, and the
assumptions made about the environment.

For a start, the laser scanner has been extensively used due to its accuracy and speed. For instance,
Dryanovski et al. [8] and Grzonka et al. [9] propose full navigation systems using laser scan matching
and IMU fusion for motion estimation embedded within SLAM frameworks that enable MAVs to
operate indoors. Bachrach et al. [10] describe a laser-based multi-level approach for 3D mapping tasks,
as well as Dryanovski et al. [8].

Infrared or ultrasound sensors are other possibilities for implementing navigation solutions.
Although they typically have less accuracy and require higher noise tolerance, several researchers
have used them to perform navigation tasks in indoor environments as an option cheaper than laser
scanners, e.g., see the works by Bouabdallah et al. [11], Matsue et al. [12] and Roberts et al. [13].

Vision cameras have also been under consideration lately. Cameras’ success in general robotics
comes mainly from the richness of the sensor data supplied, combined with their low weight,
low power designs, and relatively low prices after the irruption of imaging CMOS technology.
For the particular case of MAVs, the higher computational cost associated to vision-based navigation
has led researchers to find optimized solutions that can run over low-power processors. Among
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the most recent papers published in this regard, some propose visual SLAM solutions based on
feature tracking, either adopting a frontal mono or stereo camera configuration, e.g., Engel et al. [14]
or Fraundorfer et al. [15], or choosing a ground-looking orientation, e.g., Chowdhary et al. [16].
Others focus on efficient implementations of optical flow calculations, either dense or sparse,
and mostly from ground-looking cameras, e.g., Zingg et al. [17], or develop methods for landing,
tracking and taking off using passive, e.g., Meier et al. [18], or active markers, e.g., Wenzel et al. [19],
also adopting a ground-looking configuration.

Some of the aforementioned developments have resulted in a number of aerial robots-based
approaches addressing inspection field problems. On the one hand, Huerzeler et al. [20] describe
some scenarios for industrial and generic visual inspection using aerial vehicles, discussing as well
the platforms’ requirements. In coincidence with part of the requirements outlined above for vessel
inspection, the authors highlight the fact that inspections are usually performed in GPS-denied
environments where motion tracking systems can not be installed. For this reason, aerial platforms
for inspection must estimate their own state (attitude, velocity and/or position) relying on inner
sensors and typically using onboard computational resources. As mentioned above, some approaches
fuse visual (typically stereo) and inertial data to estimate the vehicle state, e.g., Burri et al. [21] or
Omari et al. [22], while some others make use of laser range finders for positioning and mapping and
the camera is only used for image capture, e.g., Bonnin-Pascual et al. [2] or Satler et al. [23]. Finally,
some contributions rely on the specific configuration of the element under inspection, such as the
approach described in Sa et al. [24], which is intended for the inspection of pole-like structures.

2.3. Defect Detection

Referring to automated vision-based defect detection, the scientific literature contains
an important number of proposals. Among other possibilities, these can be roughly classified in
two categories, depending on whether they look for defects specific of particular objects or surfaces,
e.g., LCD displays by Chang et al. [25], printed circuit boards by Jiang et al. [26], copper strips by
Zhang et al. [27], ceramic tiles by Boukouvalas et al. [28], etc., or, to the contrary, they aim at detecting
general and unspecific defects, e.g., see the works by Amano [29], Bonnin-Pascual and Ortiz [30],
Castilho et al. [31], Hongbin et al. [32], and Kumar and Shen [33].

Within the first category (which would also involve our approach for corrosion detection), one can
find a large collection of contributions for automatic vision-based crack detection, e.g., for concrete
surfaces see the works by Fujita et al. [34], Oulette et al. [35], Yamaguchi and Hashimoto [36] and
Zhao et al. [37], for airplanes see the work by Mumtaz et al. [38], etc. However, regarding corrosion,
to the best of our knowledge, the number of works which can be found is rather reduced [38–43].
First of all, Jahanshahi and Masri [39] make use of colour wavelet-based texture analysis algorithms
for detecting corrosion, while Ji et al. [40] utilize the watershed transform applied over the gradient
of gray-level images, Siegel et al. [41] use wavelets for characterizing and detect corrosion texture in
airplanes, Xu and Weng [42] adopt an approach based on the fractal properties of corroded surfaces
and Zaidan et al. [43] also focus on corrosion texture using the standard deviation and the entropy as
discriminating features.

3. The Aerial Platform

This section describes the aerial platform which takes the pictures which will be lately processed
for CBC detection. This platform in turn provides the localization information which is associated
with every picture, in order to better locate the defect over the vessel structures.

3.1. General Overview

The aerial platform comprises a multi-rotor vehicle fitted with a flight management unit (FMU)
for platform stabilization in roll, pitch and yaw, and thrust control, a 3-axis inertial measuring
unit (IMU)—which, according to today standards, is typically part of the FMU—a sensor suite able
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to supply vehicle 3D speed and height measurements, as well as distances to surrounding obstacles,
and an embedded PC which avoids sending sensor data to a base station, but process them onboard
and, thus, prevent communications latency inside critical control loops. Figure 2 shows a realization of
this platform taking as a base the Pelican quadrotor by Ascending Technologies.

Figure 2. A realization of the INCASS aerial platform: (green) laser scanner; (red) height sensor;
(yellow) embedded PC and (blue) camera set and illumination.

As it is well known, the AscTec FMU is equipped with a 3-axis gyroscope, a 3-axis accelerometer
and a 3-axis magnetometer, together with two ARM7 microcontrollers, one implementing the FMU
(and hence running the platform firmware) and the other reserved to higher-level control loops which
can be programmed by the user. Apart from this, the realization of Figure 2 features:

• The lightweight laser scanner Hokuyo UST-20LX, which provides 20 m coverage for
a 270◦ angular sector. This sensor is used to estimate 2D speed as well as distances to the
surrounding obstacles.

• A downward-looking LIDAR-Lite laser range finder used to supply height data for a maximum
range of 40 m. Vertical speed is estimated by proper differentiation of the height measurements.

• Two cameras to collect, from the vessel structures under inspection, images on demand
(a Chameleon 3 camera, by Pointgrey (Richmond, VA, USA), fitted with a Sony IMX265, CMOS,
1/1.8′′, 2048 × 1536-pixel imaging sensor, by Sony (Tokyo, Japan), and a fixed-focal length
lightweight M12 8 mm lens) and video footage (a GoPro 4 camera, by Gopro (San Mateo, CA,
USA), which supplies stabilized HD video).

• A 10 W pure white LED (5500–6500 K) delivering 130 lumens/watt for a 90◦ beam angle.
• An Intel NUC D54250WYB embedded PC featuring an Intel Core i5-4250U 1.3 GHz processor

and 4 GB RAM.

Apart from other sensor suites capable of providing also speed and height measurements,
the previous configuration allows operating under low-light conditions, as required in certain vessel
compartments such as e.g., oil tanker cargo holds or, in general, ballast tanks, which are typically fitted
with one single manhole-size entry point (approximately 600–800 × 600 mm, see Figure 3). In this
regard, both cameras have been chosen because they are compatible with the payload restrictions and
also for being able to produce useful images and video footage under low-light conditions, due to the
imaging sensors and the underlying electronics they are fitted with.
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Figure 3. (Left) Oil tanker manhole entry point; (Middle) Typical oil tanker cargo hold; (Right) Entry
point to a ballast tank of a bulk carrier.

3.2. Control Software

The aerial platform implements a control architecture that follows the supervised autonomy (SA)
paradigm [44]. The control software is organized around a layered structure distributed among
the available computational resources (see Figure 4). On the one hand, as said above, the low-level
control layer implementing attitude stabilization and direct motor control is executed over the main
microcontroller as the platform firmware provided by the manufacturer [45]. On the other hand,
mid-level control, running over the secondary microcontroller, comprises height and speed controllers
which map input speed commands into roll, pitch, yaw and thrust orders. The high-level control layer,
which executes over the embedded PC, implements a reactive control strategy coded as a series of
ROS nodes running over Linux Ubuntu, which combine the user desired speed command with the
available sensor data—3-axis velocities vx, vy and vz, height z and distances to the closest obstacles
di—to obtain a final and safe speed set-point that is sent to the speed controllers. Lastly, a base station
(BS), also running ROS over Linux Ubuntu, linked with the MAV via a WiFi connection, executes the
human-machine interface (HMI). The BS captures the user intention through the joystick/gamepad and
sends the resulting qualitative commands to the MAV, supplies the operator with information about
the state of the platform as well as about the task under execution through the GUI, and finally runs
the self-localization strategy which, among others, is required to tag the images collected with the
vehicle pose.

3.2.1. Estimation of MAV State and Distance to Obstacles

The platform state includes the vehicle velocities along the three axes, vx, vy and vz, and the flight
height z. Apart from this, to compute the next motion orders, the control architecture requires the
distances to the closest surrounding obstacles di. The estimation of all these values is performed by
the corresponding three modules, as described in Figure 5. This figure also details the steps followed
within each one of these modules for the particular case of the sensor configuration comprising
one IMU, a laser scanner and a height sensor, as corresponds to the realization shown in Figure 2.
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Figure 4. MAV software organization.

Figure 5. Estimation of Micro-Aerial Vehicles (MAV) state and distances to closest
surrounding obstacles.

The estimation of 3-axis speed and the distances to closest obstacles share the laser scan
pre-processing module (which essentially filters outliers) and the vehicle roll and pitch compensation
module to obtain an ortho-projected scan on the basis of the IMU roll φimu and pitch θimu values.
The processed scan is next used to both feed a scan matcher, which computes the platform 2D
roto-translation between consecutive scans (x, y, ψ) using IMU yaw ψimu for initialization, and also
to estimate distances to the closest surrounding obstacles di (closest obstacle detection module), if any.
The latter provides as many distances as angular subdivisions are made of the typically 270◦ angle
range covered by the scanner. In our case, three sectors are considered, front, left and right, and the
distances supplied are calculated as the minimum of all distances belonging to the corresponding
sector. Finally, the speed estimator module determines 3-axis speed by means of a linear Kalman filter
fed with the 2D translation vector (x, y) and the vehicle height z.

Regarding height estimation, after signal filtering (module height measurement pre-processing) and
roll-pitch compensation, the processed height reaches the height estimator module, which, on the basis
of the difference between two consecutive height measurements, decides whether this change is due
to motion along the vertical axis or because of a discontinuity in the floor surface (e.g., the vehicle
overflies a table).
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3.2.2. Generation of MAV Speed Commands

Speed commands are generated through a set of robot behaviours organized in a hybrid
competitive-cooperative framework [46]. The behaviour-based architecture is detailed in Figure 6,
grouping the different behaviours depending on its purpose. A total of four general categories have
been identified for the particular case of visual inspection: (a) behaviours to accomplish the user intention,
which propagate the user desired speed command, attenuating it towards zero in the presence of
close obstacles, or keeps hovering until the WiFi link is restored after an interruption; (b) behaviours
to ensure the platform safety within the environment, which prevent the robot from colliding or getting
off the safe area of operation, i.e., flying too high or too far from the reference surface that is involved
in speed measurements; (c) behaviours to increase the autonomy level, which provide higher levels of
autonomy to both simplify the vehicle operation and to introduce further assistance during inspections;
and (d) behaviours to check flight viability, which checks whether the flight can start or progress at
a certain moment in time. Some of the behaviours in groups (a) and (c) can operate in the so-called
inspection mode. While in this mode, the vehicle moves at a constant and reduced speed (if it is not
hovering) and user commands for longitudinal displacements or turning around the vertical axis are
ignored. In this way, during an inspection, the platform keeps at a constant distance and orientation
with regard to the front wall, for improved image capture.

speed
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inspection 
mode?
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prevent collision

limit max. height
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Figure 6. MAV behaviours: A—behaviours to accomplish the user intention; B—behaviours to
ensure the platform safety within the environment; C—behaviours to increase the autonomy level;
and D—behaviours to check flight viability.

3.2.3. Base Station

The BS runs the HMI, as mentioned before, as well as those processes that can tolerate
communications latency, while critical control loops run onboard the vehicle in order to ensure
minimum delay. One of the processes which run on the BS is the MAV pose estimation (see
Figures 4 and 7). Apart from being relevant by itself, the MAV pose is required to tag images with
positioning information, so that they can be located over the vessel structure, as well as for comparing
images across inspections. To this end, the BS collects pose data estimated by other modules under
execution onboard the platform, height z, roll φ and pitch θ, and also runs a SLAM solution which
counteracts the well-known drift that unavoidably takes place after some time of roto-translation
integration. The SLAM module receives the projected laser scans and computes online a correction
of the 2D subset (x, y, ψ) of the 6D robot pose (x, y, z, φ, θ, ψ), and a 2D map of the inspected area.
We use the public ROS package gmapping, based on the work by Grisseti et al. [47], to provide the
SLAM functionality.
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Figure 7. MAV pose estimation.

4. Detection of Defects

This section describes a coating breakdown/corrosion (CBC) detector based on a three-layer
perceptron configured as a feed-forward neural network (FFNN), which discriminates between the CBC
and the NC (non-corrosion) classes.

4.1. Background

An artificial neural network (ANN) is a computational paradigm that consists of a number of
units (neurons) which are connected by weighted links (see Figure 8). This kind of computational
structure learns from experience (rather than being explicitly programmed) and is inspired from the
structure of biological neural networks and their way of encoding and solving problems. An FFNN
is a class of ANN which organizes neurons in several layers, namely one input layer, one or more
hidden layers, and one output layer, in such a way that connections exist from one layer to the next,
never backwards [48], i.e., recurrent connections between neurons are not allowed. Arbitrary input
patterns propagate forward through the network, finally causing an activation vector in the output
layer. The entire network function, which maps input vectors onto output vectors, is determined by
the connection weights of the net wij.

Figure 8. (Left) Topology of a feed-forward neural network (FFNN) comprising one single hidden
layer; (Right) Structure of an artificial neuron.

Every neuron k in the network is a simple processing unit that computes its activation
output ok with respect to its incoming excitation x = {xi | i = 1, . . . , n}, in accordance to
ok = ϕ (∑n

i=1 wikxi + θk), where ϕ is the so-called activation function, which, among others, can take
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the form of, e.g., the hyperbolic tangent ϕ(z) = 2/(1 + e−az)− 1. Training consists in tuning weights
wik and bias θk mostly by optimizing the summed square error function E = 0.5 ∑N

q=1 ∑r
j=1(o

q
j − tq

j )
2,

where N is the number of training input patterns, r is the number of neurons at the output layer and
(oq

j , tq
j ) are the current and expected outputs of the j-th output neuron for the q-th training pattern xq.

Taking as a basis the back-propagation algorithm, a number of alternative training approaches have been
proposed through the years, such as the delta-bar-delta rule, QuickpPop, Rprop, etc. [49].

4.2. Network Features

Figure 9 shows some examples of metallic structures affected by coating breakdown and/or
corrosion. As can be expected, both colour and texture information are relevant for describing the CBC
class. Accordingly, we define both colour and texture descriptors to characterize the neighbourhood of
each pixel. Besides, in order to determine an optimal setup for the detector, we consider a number of
plausible configurations of both descriptors and perform tests accordingly. Finally, different structures
for the NN are considered varying the number of hidden neurons. In detail:

• For describing colour, we find the dominant colours inside a square patch of size (2w + 1)2 pixels,
centered at the pixel under consideration. The colour descriptor comprises as many components
as the number of dominant colours multiplied by the number of colour channels.

• Regarding texture, center-surround changes are accounted for in the form of signed differences
between a central pixel and its neighbourhood at a given radius r ( 6= w) for every colour channel.
The texture descriptor consists of a number of statistical measures about the differences occurring
inside (2w + 1)2-pixel patches.

• As anticipated above, we perform a number of tests varying the different parameters involved
in the computation of the patch descriptors, such as, e.g., the patch size w, the number of
dominant colours m, or the size of the neighbourhood for signed differences computation (r, p).

• Finally, the number of hidden neurons hn are varied as a fraction f > 0 of the number of
components n of the input patterns: hn = d f × ne.

Figure 9. Examples of coating breakdown and corrosion: (Top) images from vessels, (Bottom) ground
truth (pixels belonging to the coating breakdown/corrosion (CBC) class are labeled in black).

The input patterns that feed the detector consist in the respective patch descriptors D, which result
from stacking the texture and the colour descriptors, respectively Dtexture and Dcolour:

D = (Dtexture, Dcolour) (1)

The details for both descriptors can be found in the following sections.
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4.2.1. Dominant Colours

The colour descriptor for a pixel results from quantizing the patch surrounding that pixel in
a reduced number of representative colours, so called dominant colours (DC). In this work, we consider
a binary-tree based clustering method attempting to minimize the total squared error (TSE) between
the actual and the quantized patch. It is an adaptation of the algorithm described by Orchard and
Bouman in [50], which we will refer to from now on as the BIN method. Briefly speaking, the clustering
algorithm constrains the partitioning of the set of patch colours C to have the structure of a binary tree,
whose nodes Ci represent subsets of C and its two children split Ci trying to minimize the TSE:

TSE = ∑
dn∈DC

∑
j∈Cn

‖cj − dn‖2 , (2)

where dn are the DC and cj are the colours belonging to Cn. The tree grows up until the number of tree
leaves coincide with the number of desired DC (see Figure 10). Finally, node splitting is performed
selecting the plane which bests separates the cluster colours. The algorithm chooses the plane whose
normal vector is the direction of greatest colour variation and which contains the average colour di.
As it is well known, this vector happens to be the eigenvector ei corresponding to the largest eigenvalue
λi of the node scatter matrix Σi:

∑
j∈Ci

(
(cj − di)

Tei

)2
= λi . (3)

Colours at one side of the plane are placed in one of the node descendants Ci,R and colours at the
other side are placed in the other descendant Ci,L:

Ci,R = {j ∈ Ci s.t. eT
i (cj − di) ≥ 0} , Ci,L = {j ∈ Ci s.t. eT

i (cj − di) < 0} . (4)

At each stage of the algorithm, the leaf node with the largest eigenvalue is chosen for splitting.
This strategy is not necessarily optimal, in the sense of the TSE, since it does not look ahead to the
results of further splits, although it is expected to reduce the TSE proportionally to the total squared
variation along the direction of the principal eigenvector, what performs well in general. Notice that
the patch average colour is returned when only one DC is requested.

Figure 10. Illustration of the BIN dominant colours estimation method: 3 dominant colours result in
this case; cluster C2 splits into clusters C4 = C2,L and C5 = C2,R using the direction of largest colour
variation e2 and the average colour d2.

This clustering method has been chosen because of being simple although effective for our
purposes. Other possibilities include the popular and well-known k-means [48], NeuQuant [51],
octree-based [52] and median cut [53] quantizers.

Finally, to make more compact the features subspace spanned by the CBC class and thus make
learning easier, the set of dominant colours is ordered in accordance to one of the colour channels,
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resorting to the other channels in case of tie. The colour descriptor is obtained stacking the requested
m DC in the specified order:

Dcolour =
(

DC(1)
1 , DC(2)

1 , DC(3)
1 , . . . , DC(1)

m , DC(2)
m , DC(3)

m

)
, (5)

where DC(n)
j is the n-th colour channel value of the j-th DC (j = 1, . . . , m).

4.2.2. Signed Surrounding Differences

The texture descriptor is built from statistical measures of the signed (surrounding) differences (SD)
between a central pixel c and its p neighbours nk at a given radius r, similarly to the local binary patterns
(LBP) first described by Ojala et al. [54], but keeping the magnitude of the difference (see Figure 11).
Given colour channel n, the center-surround differences are calculated as follows:

∆(n)
sd (k) = bi(n)(r cos αk,−r sin αk)− c(n) , αk =

2π(k− 1)
p

, k = 1, . . . , p (6)

where bi(n)(·, ·) refers to the approximation, by bilinear interpolation, of image point nk at the
coordinates (x, y) = (r cos αk,−r sin αk) of colour plane n.

Figure 11. Illustration of signed (surrounding) differences ∆sd for p = 8 and r = 3.

Next, given a patch of size (2w + 1)2 centered at the pixel under consideration, we account for
the SD corresponding to all the pixels in the patch through a number of histograms: we employ
different histograms for positive and for negative differences, and also for every colour channel,
what makes necessary to calculate a total of six histograms per patch. Moreover, to counteract image
noise (to a certain extent), our histograms group the SD into 32 bins; hence, since the maximum
difference magnitude is 255 (in RGB space), the first bin accounts for magnitudes between 0 and 7,
the second bin accounts for magnitudes between 8 and 15, etc. Finally, the texture descriptor consists
of the energies of every histogram, i.e., sums of the corresponding squared probabilities Pr:

Dtexture =

(
∑∆≥0 Pr

(
∆(1)

sd

)2
, ∑∆≥0 Pr

(
∆(2)

sd

)2
, ∑∆≥0 Pr

(
∆(3)

sd

)2
,

∑∆<0 Pr
(

∆(1)
sd

)2
, ∑∆<0 Pr

(
∆(2)

sd

)2
, ∑∆<0 Pr

(
∆(3)

sd

)2
) (7)

Notice that the SD (Equation (6) and Figure 11) can be pre-calculated for every pixel of the full
image. In this way, we can later compute the patch-level histograms, required to find the texture
descriptor (Equation (7)), sharing the SD calculations among overlapping patches.

5. Experimental Results

In this section, we describe first the process followed to find an optimal configuration for the CBC
detector, and compare it with other alternative combinations of colour and texture descriptors. Next,
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we report on the detection results obtained for some image sequences captured during flights inside
a real vessel during a recent field trials campaign.

5.1. Configuration of the CBC Detector

To configure and assess the CBC detector, in this section we run a number of experiments
involving a dataset comprising images of vessel structures affected, to a greater or lesser extent,
by coating breakdown and different kinds of corrosion, and coming from several, different vessels and
vessel areas, including those visited during the field trials mentioned above. Those images have been
collected at different distances and under different lighting conditions. We refer to this dataset as the
generic corrosion dataset. A hand-made ground truth has also been generated for every image involved
in the assessment, in order to produce quantitative performance measures. The dataset, together with
the ground truth, is available from [55]. Some examples of these images and the ground truth can be
found in Figure 9.

To determine a sufficiently general configuration for the CBC detector, we consider variations in
the following parameters:

• Half-patch size: w = 3, 5, 7, 9 and 11, giving rise to neighbourhood sizes ranging from 7× 7 = 49
to 23× 23 = 529 pixels.

• Number of DC: m = 2, 3 and 4.
• Number of neighbours p and radius r to compute the SD: (r, p) = (1, 8) and (r, p) = (2, 12).
• Number of neurons in the hidden layer: hn = d f × ne, with f = 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8 and

2. Taking into account the previous configurations, the number of components in the input
patterns n varies from 12 (m = 2) to 18 (m = 4), and hence hn goes from 8 (m = 2, f = 0.6) to 36
(m = 4, f = 2).

In all cases, all neurons make use of the hyperbolic tangent activation function with a = 1
(see Section 4.1). In this way, the output of the neural network o is always a value between −1 and 1,
respectively corresponding to the NC and the CBC classes. Typically, pattern xi should be classified
as CBC if its output value oi is closer to 1 than to −1. To determine whether another approach
would be beneficial, we consider a threshold τ ∈ [0, 1) to classify the pattern as CBC (oi ≥ τ) or
NC (oi < τ). The final consequence of all these variations in the network parameters is a total of
5 (patch sizes) × 3 (# DC required) × 2 (r-p combinations for SD)× 8 (# hidden neurons) = 240
FFNNs to be trained and evaluated for 10 different threshold values τ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8 and 0.9, leading to a total of 2400 assessments.

All configurations have been evaluated at the patch level using the same training and test sets
(although w changes give rise to different patches, we ensure they all share the same center), which have
been generated following the next rules:

1. We select a number of patches from the images belonging to the generic corrosion dataset. The set
of patches is split into the training patch set and the test patch set (additional patches are used to
define a validation patch set, which will be introduced later).

2. A patch is considered positive (CBC class) if the central pixel appears labelled as CBC in the
ground truth. The patch is considered negative (NC class) if none of its pixels belong to the
CBC class.

3. Positive samples are thus selected using ground truth CBC pixels as patch centers and shifting
them a certain amount of pixels s < 2w + 1 to pick the next patch in order to ensure a certain
overlapping between them (ranging from 57% to 87% taking into account all the patch sizes), and,
hence, a rich enough dataset.

4. Negative patches, much more available in the input images, are selected randomly trying to
ensure approximately the same number of positive and negative patterns, to prevent training
from biasing towards one of the classes.

5. Initially, 80% of the set of patches are placed in the training patch dataset, and the remaining
patches are left for testing.
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6. Training, as far as the CBC class is concerned, is constrained to patches with at least 75% of pixels
labelled as CBC. This has meant that, approximately, 25% of the initial training patches have had
to be moved to the test patch set. Notice that this somehow penalizes the resulting detector during
testing—i.e., consider the extreme case of a patch with only the central pixel belonging to the
CBC class. In any case, it is considered useful to check the detector generality.

Additionally, following common good practices in machine learning, input patterns are
normalized before training to avoid large dynamic, non-zero centered ranges in one dimension
from affecting learning in other dimensions and thus favour quick convergence of the optimization
algorithms involved in training [56]. Normalization is performed to ensure that all descriptor
components lie in the interval [−0.95, +0.95]. Weight initialization is done following the Nguyen-Widrow
method [57,58] so that the active regions of the hidden neurons are distributed approximately evenly
over the input space. Finally, we make use of iRprop [59] to optimize the network weights. Table 1
summarizes the parameters of the optimizing algorithm as well as the main facts of the training and
testing processes. iRprop parameters were set to the default values recommended by Igel and Hüsken
in [59] since optimization was observed to progress adequately, i.e., reducing, without oscillations,
the network error from iteration to iteration during training.

Table 1. Training/testing parameters (see [59] for an explanation of the iRprop parameters).

Parameter Symbol Value

activation function free parameter a 1
iRprop weight change increase factor η+ 1.2
iRprop weight change decrease factor η− 0.5
iRprop minimum weight change ∆min 0
iRprop maximum weight change ∆max 50
iRprop initial weight change ∆0 0.5

(final) number of training patches 232,094
— positive patches 120,499
— negative patches 111,595
(final) number of test patches 139,150
— positive patches 72,557
— negative patches 66,593

After training and evaluation (using the test patch set), true positive rates (TPR), false positive rates
(FPR), and the accuracy metric (A) are calculated for the 2400 cases:

TPR =
TP

TP + FN
, FPR =

FP
TN + FP

, A =
TP + TN

TP + TN + FP + FN
(8)

where, as mentioned above, the positive label corresponds to the CBC class. Furthermore, given
the particular nature of this classification problem, which is rather a case of one-class classification,
i.e., detection of CBC against any other category, so that positive cases are clearly identified contrary to
the negative cases, we also consider the harmonic mean of precision (P) and recall (R), also known as
the F1 measure [60]:

P =
TP

TP + FP
, R =

TP
TP + FN

(= TPR) (9)

F1 =
2 P · R
P + R

=
2 TP

2 TP + FP + FN
(10)

Notice that F1 values closer to 1 correspond to better classifiers.
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Figure 12a plots in FPR-TPR space the full set of 2400 configurations of the CBC detector.
Within this space, the perfect classifier corresponds to point (0,1). Consequently, among all classifiers,
those whose performance lie closer to the (0,1) point are clearly preferrable to those ones that are
farther, and hence distances to point (0,1) d0,1 can also be used as a sort of performance metric.
The same applies to the P-R space and point (1,1). Table 2a–d show, respectively, minimum d0,1,
maximum accuracy, minimum d1,1 and maximum F1 values for every combination of the w, r, p and
m parameter values. In all cases, the fraction of hidden neurons f and the value of threshold τ are
indicated in parentheses. As can be observed, best configurations coincide in patch widths w of
9 and 11 pixels, (r, p) = (2,12) and 3 or 4 dominant colours (parameter m). According to Table 2a–d,
absolute minimum d0,1/d1,1 and maximum accuracy/F1 values correspond to the same case: w = 9,
(r, p) = (2, 12), m = 3, hn = 30 (input patterns consist of 6 + 3× 3 = 15 components and the best
value for f is 2) and τ = 0. Other combinations employing smaller patches (what will reduce the
execution time of both the colour and the texture descriptors), but leading to good performance,
are (w = 5, r = 2, p = 12, m = 3, f = 1.4/1.8) and (w = 7, r = 2, p = 12, m = 2, f = 2).

Table 2. CBC detector performance data [BIN-SD-RGB combination]: (a) minimum distance to the
(0,1) point in FPR-TPR space; (b) accuracy values; (c) minimum distance to the (1,1) point in P-R space;
(d) F1 values. Values in parentheses are the corresponding f and τ values. Best global configuration is
highlighted in bold.

(a) w

(r, p) m 3 5 7 9 11

2 0.1747 (1.0,0.0) 0.1688 (1.8,0.0) 0.1512 (1.6,0.0) 0.1484 (1.2,0.0) 0.1629 (1.8,0.0)
(1, 8) 3 0.1712 (2.0,0.0) 0.1600 (1.4,0.0) 0.1496 (1.4,0.0) 0.1382 (1.6,0.0) 0.1692 (1.8,0.0)

4 0.1696 (2.0,0.0) 0.1741 (2.0,0.0) 0.1657 (1.6,0.0) 0.1501 (2.0,0.0) 0.1795 (1.8,0.0)

2 0.1849 (1.6,0.0) 0.1627 (1.6,0.0) 0.1377 (2.0,0.0) 0.1370 (2.0,0.0) 0.1574 (1.2,0.0)
(2,12) 3 0.1652 (2.0,0.0) 0.1519 (1.8,0.0) 0.1450 (1.4,0.0) 0.1227 (2.0,0.0) 0.1468 (2.0,0.0)

4 0.1641 (1.8,0.0) 0.1555 (1.2,0.0) 0.1473 (0.8,0.0) 0.1394 (1.2,0.0) 0.1735 (0.6,0.0)

(b) w

(r, p) m 3 5 7 9 11

2 0.8851 (1.0,0.0) 0.8908 (1.8,0.0) 0.9027 (1.6,0.0) 0.9050 (1.2,0.0) 0.9004 (1.8,0.0)
(1, 8) 3 0.8873 (2.0,0.0) 0.8956 (1.4,0.0) 0.9034 (1.4,0.0) 0.9124 (1.6,0.0) 0.8964 (1.8,0.0)

4 0.8881 (2.0,0.0) 0.8886 (2.0,0.0) 0.8965 (1.6,0.0) 0.9075 (2.0,0.0) 0.8930 (1.8,0.0)

2 0.8800 (1.6,0.0) 0.8941 (2.0,0.0) 0.9116 (2.0,0.0) 0.9142 (2.0,0.0) 0.9024 (1.2,0.0)
(2,12) 3 0.8915 (2.0,0.0) 0.9010 (1.4,0.0) 0.9070 (1.8,0.0) 0.9224 (2.0,0.0) 0.9107 (2.0,0.0)

4 0.8928 (1.8,0.0) 0.9003 (1.2,0.0) 0.9055 (1.4,0.0) 0.9135 (1.6,0.0) 0.8980 (2.0,0.0)

(c) w

(r, p) m 3 5 7 9 11

2 0.1753 (1.0,0.0) 0.1694 (1.8,0.0) 0.1515 (1.6,0.0) 0.1487 (1.2,0.0) 0.1631 (1.8,0.0)
(1, 8) 3 0.1717 (2.0,0.0) 0.1603 (1.4,0.0) 0.1499 (1.4,0.0) 0.1383 (1.6,0.0) 0.1694 (1.8,0.0)

4 0.1701 (2.0,0.0) 0.1748 (2.0,0.0) 0.1662 (1.6,0.0) 0.1504 (2.0,0.0) 0.1797 (1.8,0.0)

2 0.1858 (1.6,0.0) 0.1631 (1.6,0.0) 0.1379 (2.0,0.0) 0.1372 (2.0,0.0) 0.1575 (1.2,0.0)
(2,12) 3 0.1656 (2.0,0.0) 0.1522 (1.8,0.0) 0.1452 (1.4,0.0) 0.1228 (2.0,0.0) 0.1468 (2.0,0.0)

4 0.1645 (1.8,0.0) 0.1558 (1.2,0.0) 0.1475 (0.8,0.0) 0.1396 (1.2,0.0) 0.1737 (0.6,0.0)

(d) w

(r, p) m 3 5 7 9 11

2 0.8837 (1.0,0.0) 0.8891 (1.8,0.0) 0.9017 (1.6,0.0) 0.9041 (1.2,0.0) 0.8995 (1.8,0.0)
(1, 8) 3 0.8860 (2.0,0.0) 0.8946 (1.4,0.0) 0.9025 (1.4,0.0) 0.9117 (1.6,0.0) 0.8953 (1.8,0.0)

4 0.8870 (2.0,0.0) 0.8864 (2.0,0.0) 0.8942 (1.6,0.0) 0.9059 (2.0,0.0) 0.8908 (1.8,0.0)

2 0.8776 (1.6,0.0) 0.8923 (1.6,0.0) 0.9111 (2.0,0.0) 0.9134 (2.0,0.0) 0.9020 (1.2,0.0)
(2,12) 3 0.8904 (2.0,0.0) 0.9003 (1.4,0.0) 0.9059 (1.8,0.0) 0.9222 (2.0,0.0) 0.9105 (2.0,0.0)

4 0.8916 (1.8,0.0) 0.8991 (1.2,0.0) 0.9044 (0.8,0.0) 0.9124 (1.6,0.0) 0.8959 (2.0,0.0)
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In a second round of tests, the dominant colours have been determined making use of k-means [48],
instead of the BIN method, with initial centers chosen by means of k-means++ [61]. k-means++
chooses carefully the initial seeds employed by k-means, in order to avoid poor clusterings. In essence,
the algorithm chooses one center at random from among the patch colours; next, for each other
colour, the distance to the nearest center is computed and a new center is selected with probability
proportional to those distances; the process repeats until the desired number of DC is reached and
k-means runs next. The seeding process essentially spreads the initial centers throughout the set of
colours. This strategy has been proved to reduce the final clustering error as well as the number of
iterations until convergence. Figure 12b plots the full set of configurations in FPR-TPR space. In this
case, the minimum d0,1/d1,1 distances and the maximum A/F1 values are, respectively, 0.1242, 0.1243,
0.9222, 0.9219, slightly worse than the values obtained for the BIN method. All values coincide,
as before, for the same configuration, which, in turn, is the same as for the BIN method. As can be
observed, although the FPR-TPR plots are not identical, they are very similar. All this suggests that
there are not many differences between the calculation of dominant colours by one (BIN) or the other
method (k-means).

Figure 12. FPR versus TPR for all descriptor combinations: (a) BIN - SD - RGB; (b) k-means - SD - RGB;
(c) BIN - uLBP - RGB; (d) BIN - SD - L∗u∗v∗; (e) convex hulls of the FPR-TPR point clouds corresponding
to each combination of descriptors.

Analogously to the previous set of experiments, in a third round of tests, we change the way
how the other part of the patch descriptor is built: we adopt stacked histograms of uniform local
binary patterns (uLBP) [54] as texture descriptor, one histogram for every colour channel (similarly to
the SD-based descriptor). LBPs code the intensity differences with surrounding pixels as 0-1 values
(with 1 representing positive or null difference, and 0 for the negative case), and, hence, express local
image texture through a compact, binary code of as many bits as neighbours. uLBPs group rotationally
equivalent codes with zero or exactly two 0-1/1-0 transitions (one of each). As well as for SD,
we consider p = 8 and p = 12 neighbours at, respectively, distances r = 1 and r = 2, and employ
bilinear interpolation to approximate the pixel values. As well as in the work by Ojala et al. [54],
we discard non-uniform codes. Consequently, 9 or 13-bin histograms result for the p = 8 and p = 12
cases, leading to, respectively, texture descriptors comprising 3× 9 = 27 and 3× 13 = 39 components.
Figure 12c plots the full set of configurations in FPR-TPR space. In this case, the minimum d0,1/d1,1

distances and the maximum A/F1 values are, respectively, 0.1706, 0.1706, 0.9042, 0.9019, and are
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attained for w = 11, r = 1, p = 8, m = 2, f = 1.2 and τ = 0. The resulting performance is also worse
than for the SD-based texture descriptor. Notice that, in general, SD are richer than LBPs, since the
latter code the signs of the surrounding differences but not their magnitude, which may become
relevant if contrast is one of the relevant features of the texture. Given the results obtained, it is clear
that the SD-based descriptor, comprising both sign and magnitude of surrounding differences, is more
adequate than the uLBP-based descriptor for this particular texture.

In a fourth and last round of tests, colour and texture data have been obtained by means of,
respectively, the BIN method and the SD statistics, but both have been calculated over the CIE
L∗u∗v∗colour space, instead of over RGB. The CIE L∗u∗v∗colour space is considered because of the
well known properties of this space regarding perceptual colour differences, opposite to RGB, whose
components are linearly related to primary luminances and readily available from the imaging sensor.
The FPR-TPR plot with all configurations can be found in Figure 12d. In this case, the minimum
d0,1/d1,1 distances and the maximum A/F1 values are, respectively, 0.1235, 0.1235, 0.9204 and 0.9203,
not far from using RGB. The optimal configuration is not identical to the RGB case, although only
parameter f changes, from 2 to 1.8.

Figure 12e superimposes the convex hulls of the FPR-TPR point clouds to make easier appreciate,
from a more global perspective, the performance of the different combinations of colour and texture
descriptors involved in the above-performed comparison. Additionally, Figure 13 provides relevant
details of the training/learning processes for the BIN-SD-RGB best configuration, including the
evolution of the mean squared error (MSE) during training for a total of 5000 epochs. As can be
seen, the training error stabilizes more or less after 1000 epochs, while the error resulting for the
validation patch set (a small fraction of additional patches from the generic corrosion dataset, not used for
training nor for testing) does not increase significantly; no overfitting is thus observed.

BIN-SD-RGB truth
(w = 9, r = 2, p = 12, m = 3, f = 2, τ = 0) CBC NC
classification CBC 63,989 2,227

output NC 8,568 64,366
size of the input patterns 15 compon.

number of parameters optimized 511
TPR 0.8819
FPR 0.0335
d0,1 0.1227
A 0.9224
P 0.9664
R 0.8819

d1,1 0.1228
F1 0.9222

Figure 13. Best configuration of the CBC detector: (Left) performance details (test patch set);
(Right) evolution of MSE during training, for the training patch set and the validation patch set.

Figures 14–16 show detection results at the pixel level for a selection of images of the
generic corrosion dataset. In every figure, the middle row shows the output of the CBC detector:
negative values are shown as black, while positive values are shown as shades of gray proportionally
to the detector output (ranging from 0 to 1 for the positive side). The bottom row shows the contours
of the resulting regions superimposed over the original image. To obtain these results, every image has
been processed patch by patch, setting their centers at the points of a grid with step s ≤ 2w + 1. In case
the patch center is classified as CBC by the detector (i.e., the NN output is greater or equal than τ = 0),
every pixel of the patch is also explored to determine whether it also belongs to the CBC class or not
and produce a finer detection. If the center does not belong to the CBC class, no other pixel of the patch
is considered and the search continues in the next patch, whose center will be located in the next grid
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point. Once all the image pixels have been considered and NN outputs are available for them, a final
post-processing step follows, in which those outputs are median-filtered using a 3× 3 support region.

Figure 14. Examples of CBC detection for the generic corrosion dataset (I): (Top) original images;
(Middle) CBC detector output; (Bottom) detection contours superimposed in red.

Figure 15. Examples of CBC detection for the generic corrosion dataset (II): (Top) Original images;
(Middle) CBC detector output; (Bottom) Detection contours superimposed in red.

Figure 16. Examples of CBC detection for the generic corrosion dataset (III): (Top) Original images;
(Middle) CBC detector output; (Bottom) Detection contours superimposed in red.
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Finally, global performance data for every image of the generic corrosion dataset can be found
in Figure 17. To this end, TP, TN, FP and FN have been evaluated at the pixel level. This makes
dramatically relevant deviations of just one pixel right, left, up and/or down while generating the
ground truth (what is relatively likely). In order to counteract to a certain extent this excessive influence,
we consider correct those classifications for which the distance between a positive prediction and
a positive in the ground truth is less than or equal to 5 pixels. Besides, it must be noticed that most
of the typical metrics used to evaluate the classification output, i.e., Equations (8)–(10), can become
undefined for a given image because one or several of the respective quotients become zero. This is
because an image is not a dataset which purposively contains samples from all the classes involved
in the classification problem. By way of example, consider the extreme case of an image which
does not contain any pixel affected by corrosion, which in turn is classified correctly by the defect
detector; this situation makes zero all the quotients of Equations (8)–(10) except for the accuracy
metric, since TN = “all image pixels” and consequently TP = 0, FP = 0 and FN = 0. Other cases
which make zero one or several of those quotients typically arise when there is “nothing or almost
nothing to detect” in the image. Because of the aforementioned, to show global performance at the
pixel level, Figure 17a plots a histogram of accuracy values, which provides information about correct
classifications, while Figure 17b,c respectively plot histograms of the fraction of false positives (FFP) and
the fraction of false negatives (FFN), i.e., the classification errors:

FFP =
FP

TP + TN + FP + FN
, FFN =

FN
TP + TN + FP + FN

(11)

Average performance values for this dataset can be found in Figure 17d. (Notice that the
accuracy metric is equivalent to the discrepancy percentage [62,63], a metric for evaluating image
segmentation results.)

(d)
dataset A FFP FFN

generic corrosion 0.9414 0.0308 0.0278

Figure 17. Global performance histograms, at the pixel level, for the generic corrosion dataset:
(a) Accuracy values; (b) Fraction of false positives; (c) Fraction of false negatives; (d) Average
performance values.

Summing up, taking into account the quantitative and qualitative performance data reported for
the generic corrosion dataset, we can say:

1. Regarding the patch test set, TPR = R = 0.8819 and FPR = 0.0335 respectively indicate that less than
12% of positive patches and around 3% of negative patches of the set are not identified as such,
while A = 0.9224 means that the erroneous identifications represent less than 8% of the total set
of patches.

2. At the pixel level, A = 0.9414, i.e., accuracy turns out to be higher than for patches, leading to
an average incidence of errors (1− A = FFP + FFN) of about 5%, slightly higher for false positives,
3.08% against 2.78%.
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3. Figures 14–16, reporting on defect detection performance at a qualitative level, show accurate
CBC detection.

4. In accordance to the aforementioned, the CBC detector can be said to perform well under general
conditions, improving at the pixel level (5% of erroneous identifications) against the test patch set
(8% of erroneous identifications).

5.2. Results for Field Test Images

This section reports on the results obtained for a number of images captured during a campaign
of field experiments taking place onboard a 50.000 DWT bulk carrier while at port in May 2016.
Images were captured during real flights within several scenarios of the vessel, taking advantage of
the many features implemented in the MAV control architecture oriented towards improving image
quality and, ultimately, defect detection performance. In more detail, the MAV was flown inside one of
the cargo holds, in open-air, and also within the fore-peak tank and within one of the top-side ballast
tanks, fitted both places with a single, manhole-sized entry point and limited visibility without artificial
lighting. Some pictures about the tests in the different environments can be found in Figures 18 and 19.
Videos about the trials are available from [64] (cargo hold), from [65] (top-side tank), and from [66]
(fore-peak tank). By way of example, Figure 20 plots the trajectories estimated for some of the flights
performed during the inspections.

Figure 18. Some pictures about the tests performed inside the bulk carrier: (Top) cargo hold;
(Middle) top-side tank; (Bottom) fore-peak tank.
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More than 200 images from the aforementioned environments captured during some of those
flights have been selected for an additional evaluation of the CBC detector under flying conditions.
These images define the cargo hold, top-side tank and fore-peak tank datasets which we will refer to
in this section, comprising thus images coming from exclusively flights performed with the MAV
described in Section 3. Ground truth data has also been generated for all those images, in order to
obtain quantitative performance assessments, as in Section 5.1. (A fraction of these images are also
part of the generic corrosion dataset we make use of in Section 5.1, representing, in that case, images
from one among several vessels/vessel areas this dataset consists of.)

Figure 19. Pictures from some of the flights performed inside the bulk carrier: (Top) cargo hold;
(Middle) top-side tank; (Bottom) fore-peak tank.

Figure 20. Trajectories estimated for some of the flights performed inside the bulk carrier.
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Figures 21 and 22 show detection results for some of the images captured during the flights
inside the cargo gold. This area of the vessel was in pretty good condition, so that not many CBC
detections could be expected, as can be seen from the results obtained. The other two areas of the
vessel did contain a number of cases of CBC, as can be observed from Figures 23 and 24 for the top-side
tank and Figures 25 and 26 for the fore-peak tank. As mentioned above, both areas are usually not
illuminated, what required the activation of the MAV spotlight during flight. Global performance
results for the field trials, i.e., considering all three datasets alone and jointly for the whole vessel,
are shown in Figure 27a–c in the form of, respectively, histograms of accuracy values, fraction of false
positives and fraction of false negatives, in the same way it has been done for the generic corrosion dataset.
Average values can be found in Figure 27d.

Figure 21. Examples of CBC detection for the cargo hold dataset (I): (Top) original images;
(Middle) CBC detector output; (Bottom) detection contours superimposed in red.

Figure 22. Examples of CBC detection for the cargo hold dataset (II): (Top) original images;
(Middle) CBC detector output; (Bottom) detection contours superimposed in red.



Sensors 2016, 16, 2118 23 of 29

Figure 23. Examples of CBC detection for the top-side tank dataset (I): (Top) original images;
(Middle) CBC detector output; (Bottom) detection contours superimposed in red.

Figure 24. Examples of CBC detection for the top-side tank dataset (II): (Top) original images;
(Middle) CBC detector output; (Bottom) detection contours superimposed in red.

Figure 25. Examples of CBC detection for the fore-peak tank dataset (I): (Top) original images;
(Middle) CBC detector output; (Bottom) detection contours superimposed in red.
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Figure 26. Examples of CBC detection for the fore-peak tank dataset (II): (Top) original images;
(Middle) CBC detector output; (Bottom) detection contours superimposed in red.

(d)

dataset A FFP FFN
cargo hold 0.9900 0.0099 0.0001

top-side tank 0.9353 0.0336 0.0311
fore-peak tank 0.9576 0.0329 0.0095

bulk carrier 0.9608 0.0249 0.0143

Figure 27. Global performance histograms, at the pixel level, for the cargo hold, top-side tank and fore-peak
tank datasets alone and jointly for the whole vessel: (a) Accuracy values; (b) Fraction of false positives;
(c) Fraction of false negatives; (d) Average performance values.

As can be observed, classification performance is slightly better than the one obtained
for the generic corrosion dataset, with the CBC detector behaving well in general for the three
datasets/environments, with a similar, low amount of classification errors representing on average
around 3% of the image pixels, once again slightly higher regarding false positives.

5.3. Some Comments on the Time Complexity of the Defect Detector

Regarding the time complexity of the classifier, most part of the time required is spent on
computing the patch descriptor. As mentioned before, the SD are pre-computed at the pixel level for
all the image; next, the statistics expressed in Equation (7) are calculated at the patch level, sharing
the computation of the SD for the pixels belonging to overlapping patches. The calculation of the SD
is of the order of the number of neighbours (p) and the size of the image (V × H pixels), while the
computation time of the SD statistics depends on the size of the patch ((2w + 1)2) and on the number
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of bins of the SD histograms (set to 32). As for the DC, they must be calculated directly at the patch
level, so no pre-calculation is possible. The DC are determined through an iterative process, with as
many iterations as the number of DC (m). At every iteration, all pixels of the patch are considered,
so time complexity depends on the patch size ((2w + 1)2).

Besides, as explained in Section 5.1, in case the patch center is classified as CBC by the detector,
every pixel of the patch is also explored to determine whether it also belongs to the CBC class or
not and produce a finer detection. This means that the processing time depends on the number and
size of the defects appearing in an image. On most occasions, images do not contain any or very few
defects, so lower execution times are likelier. This can be observed in the histogram of Figure 28 (left),
which accounts for the processing times corresponding to the images of the cargo hold, top-side tank and
fore-peak tank datasets, and also in the plot of Figure 28 (right), which shows the relationship between
the percentage of defective area in the image (according to the ground truth) and the processing time.
We choose these datasets because they all come from the Pointgrey camera mentioned in Section 3.1
and hence have the same size, contrary to the case of the images of the generic corrosion dataset.

Figure 28. Processing times for the cargo hold, top-side tank and fore-peak tank datasets: (Left) histogram;
(Right) processing time versus percentage of defective area in the image.

All times correspond to an Intel Core i7 processor fitted with 32Gb of RAM and running
Windows 10. Hence, some increments of the execution time which can be observed in Figure 28
can be attributed to sporadic overhead from the operating system, such as those cases of Figure 28
(right) which detach from the apparently linear relationship between percentage of defective area
and execution time. Besides, it is also important to note that, apart from the pre-computation of the
SD, no other optimization has been incorporated in the code to reduce the processing time. It is left
as future work adopting speedup strategies, such as multithreading, use of Intel processors’ SIMD
instructions, and/or use of GPGPU units. In any case, apart from the fact that reducing the execution
time is interesting per se, it must be noticed that this application does not involve any requirement of
real-time operation.

6. Conclusions

An approach for coating breakdown/corrosion (CBC) detection in vessel structures has been described.
It comprises (1) a semi-autonomous MAV fitted with functionalities intended to enhance image capture
by means of extensive use of behaviour-based high-level control; and (2) a neural network to detect
pixels belonging to CBC-affected areas. Classification is performed on the basis of the neighbourhood
of every image pixel, computing a descriptor that integrates both colour and texture information.
Colour data is supplied in the form of dominant colours (DC), while texture data is based on statistics
of signed (surrounding) differences (SD). Both kinds of information are obtained directly from the RGB
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image. Successful detection results have been reported for a generic and varied image set comprising
coating breakdown and corrosion defects, which has been in turn used to design and tune the CBC
detector, as well as to compare the proposed descriptors with alternative ways of describing colour
and texture. Besides, we have provided detection results for images captured by the MAV during
a number of flights performed inside a bulk carrier in the framework of a campaign of field tests taking
place in 2016.

Future enhancement steps comprise the fusion of the laser scanner with optical-flow sensors,
in order to enlarge the number of environments which can be inspected: i.e., optical-flow sensors
get in trouble at inadequately illuminated scenarios, where the laser scanner succeeds, while laser
scanners can become not so useful in well-lit areas but without enough structure that permits to
produce reliable laser-scan matchings. Regarding the CBC detector, speeding up strategies, either using
multithreading, Intel processors’ SIMD instructions, and/or GPGPU units, are under consideration,
as well as a stronger integration between the onboard range sensors and feature extraction to further
increase defect detection performance (beyond the support provided by the platform control software)
through, e.g., scale and viewpoint normalization.
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Abbreviations

The following main abbreviations are used in this manuscript:

A Accuracy
CBC Coating-Breakdown/Corrosion
DC Dominant Colours
FFN Fraction of False Negatives
FFP Fraction of False Positives
FN False Negatives
FP False Positives
FPR False Positive Rate
P Precision
R Recall
SD Signed (surrounding) Differences
TN True Negatives
TP True Positives
TPR True Positive Rate
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