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Abstract— Vessel maintenance entails periodic visual inspec-
tions of the hull in order to detect defects such as coating
breakdown, corrosion or cracks. These inspections are typically
performed by well-trained surveyors at a great cost because,
for the survey to be valid, the inspector is required to be at
arms’ reach from the surface under inspection, what entails
the provision of access means (e.g. scaffolding) to reach any
point of interest in the hull. The work that is presented in
this paper builds upon a previous development of a multirotor
to be used as an assistant during this kind of inspections, as a
remote camera for close-up inspection. On this occasion, we pro-
pose a semi-autonomous platform whose control architecture
implements a supervised autonomy (SA) approach to enlarge
the range of affordable inspections because of the inclusion
of the operator in the main control loop. According to the
SA paradigm, the control architecture provides a number of
autonomous functions to make simpler the inspection operation.
As part of these functions, and on the basis of the relationship
between image saliency and the presence of defects, we propose
an image saliency-driven capability which aims at collecting
close-up images from relevant areas of the hull and at the
same time fully cover the surfaces under inspection.

I. INTRODUCTION

The movement of goods by vessels has been one of the
most cost and time effective transportation methods so far.
An always increasing safety standard level has to be achieved
in order to improve the transportation service quality. To this
aim, constant surveying and subsequent repairs have to be
carried out to ensure the structural reliability of these ships.

Nowadays, this structural integrity is assessed through
periodical inspections, carried out by surveyors who operate
using well established methodologies and techniques. The
effort in the inspection tasks is huge and often has to be
carried out by a single surveyor within a short amount of
time in order to return the vessel to service. Besides, the
surveying and subsequent repairs require many of the tanks
(cargo, fuel, ballast, etc) to be cleaned and ventilated, and
suitable access means to be arranged —scaffolding, cherry
pickers, etc. In the case of older ships, the preparation of each
compartment is necessary to allow the repair crew to enter
and access the element that has failed; on these occasions, the
surveyor can perform the inspection using the same facilities
without additional cost. However, in a younger ship, the
number of required repairs is small, so the bulk of these
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arrangements is only required for the survey itself. As a
result, a greater proportion of the preparation cost is entirely
due to the survey, which for many well run ships is likely to
reveal no defects in the early years.

However, the maritime industry is forced to follow the
general trend of rationalization so as to reach a higher
level of standardization of the procedures related to marine
transportation that will enable higher performance according
to safety and financial criteria. One way to achieve this is
through the incorporation of novel technological means that
increase the level of automation. One of the main goals of
the already concluded EU FP7 project MINOAS (Marine
INspection rObotic Assistant System) was to develop a fleet
of robotic platforms with different locomotion capabilities
with the aim of teleporting the human surveyor to the
different vessel structures to be inspected. Given the enormity
of these structures and the requirement for vertical motion
as part of the inspection process, a multirotor platform (also
named as micro-aerial vehicles or MAVs by some authors)
was selected as one of the members of the fleet due to their
small size, agility and fast deployment time.

These platforms have become increasingly popular in
recent years, and, as a consequence, a number of MAV
navigation solutions, comprising platform stabilization, self-
localization, mapping, and obstacle avoidance, can be found
in the related literature. They differ mainly in the sensors
used to solve these tasks, the amount of processing that
is performed onboard/offboard, and the assumptions made
about the environment. The laser scanner has been used
extensively due to its accuracy and speed. For instance,
[1], [2] proposed full navigation systems using laser scan
matching and IMU fusion for motion estimation embedded
within SLAM frameworks that enable such MAVs to operate
indoors. In [1], [3], a multilevel approach is described for
3D-mapping tasks. Infrared or ultrasound sensors are other
possibilities for implementing navigation solutions. Although
they typically have less accuracy and require higher noise
tolerance, several researchers (see [4]–[6]) have used them
to perform navigation tasks in indoor environments, since
they are a cheaper option than laser scanners. Finally, vision-
based navigation has turned out to be of paramount relevance
lately, mostly because of their particular suitability for MAVs
as they are low-power, low-price and small, but rich sensors.
This richness, however, entails higher computational costs,
what has led researchers to find optimized solutions that
can run over low-power processors. Among them, some
researchers propose visual navigation solutions (embedded
within SLAM frameworks or not) based on feature tracking,
either adopting a frontal mono or stereo camera configuration



(e.g. [7]–[10]) or choosing a ground-looking orientation (e.g.
[11], [12]). Others focus on efficient implementations of
optical-flow calculations, either dense or sparse, and mostly
from ground-looking cameras (e.g. [13]) or develop methods
for landing, tracking, and taking off using passive (e.g. [14]),
or active markers (e.g. [15]).

The MINOAS aerial platform consisted in an autonomous
MAV fitted with a flexible set of cameras to provide a first
overview of the vessel structures inside cargo holds [16].
The platform was devised for indoor/semi-indoor flights (i.e.
GPS-denied scenarios), and featured way-point navigation
and obstacle avoidance. These tasks were implemented by
means of a 30 m-range laser scanner that was used to feed
a laser scan-based odometer and a SLAM solution. The
mission was specified as a list of way-points to reach and
the actions to perform once reached, e.g. take a picture.

The INCASS project (Inspection Capabilities for En-
hanced Ship Safety), a follow-up of MINOAS, is currently
under development also in the framework of EC funding.
One of the tasks which is still running has to do with
the re-design of the aerial platform in accordance to some
constructive advice from end-users during the final field trials
of MINOAS [17]. Ship surveyors essentially referred to the
usability and flexibility of the platform: instead of way-point
navigation, what required the specification of a precise list of
points for each mission, they suggested the implementation
of a friendly, flexible and robust way to interact with the
platform so that they could take the robot to any point of
e.g. a cargo hold without the need to be an expert pilot.

In this regard, we have developed a novel semi-
autonomous aerial platform intended for the aforementioned
visual inspection task. This robot has been devised to include
an operator in the position control loop to extend the range of
affordable inspections. Meanwhile, the control architecture
autonomously takes care of attitude stabilization, as well
as speed and height control, including hovering flight (i.e.
keep current height and speed 0) whenever there is no
command pending to be executed. A higher control layer
implements additional functionalities which provide further
assistance to the operator in the form of added autonomous
functions. This includes collision prevention or avoidance
of getting too far from the wall under inspection, among
others. This shared control is implemented via a supervised
autonomy (SA) approach [18] and making use of behavior-
based control [19].

In this paper, we describe an on-going work that is
to complement the upper control layer of the MAV with
behaviors aiming at enhancing the quality and relevance of
the collected images. The goal is twofold: (1) prevent the
platform from performing movements that can negatively
affect image quality and (2) focus the capture of images
onto relevant areas from the visual inspection point of view.
Regarding the latter, we show the correlation between image
saliency and the presence of defects, what can be used to
drive image taking towards the “hot spots” of the hull for
close-up inspection.

The rest of the paper is organized as follows: Section II de-

Fig. 1. Firefly platform and the visual inspection sensor suite: (green) front-
looking / bottom-looking optical flow sensors, (red) left / right ultrasound
sensors, (orange) height sensor, (yellow) embedded PC, (blue) camera.

scribes the aerial platform, Section III outlines the saliency-
based defect detection approach, Section IV describes the
control architecture, and Section V concludes the paper.

II. THE INCASS AERIAL PLATFORM

Figure 1 shows a Firefly hexacopter from Ascending
Technologies configured for the visual inspection application,
fitted with a lightweight sensor suite1 comprising:

• Two optical flow sensors, one looking to the ground
and the other pointing forward, to estimate the vehicle
speed. PX4Flow sensors [20] are used to this end.

• Range sensors pointing in different directions for colli-
sion prevention. Currently, we use two Maxbotix HRLV-
EZ4 sensors oriented to the left and to the right,
providing range data up to 5 m at 10 Hz.

• An additional height sensor that provides an extended
range above the 5 m covered by the PX4Flow oriented
downwards. To this end, we use the LIDAR-Lite laser
range finder (http://pulsedlight3d.com/), which provides
range data up to 40 m at 50 Hz.

• A reconfigurable set of cameras that collect the re-
quested images from the vessel structures under inspec-
tion. For instance, the Firefly shown in Fig. 1 features a
minimalistic configuration comprising a single forward-
looking uEye UI-1221LE camera.

The vehicle carries an additional processing board which
avoids sending sensor data to a base station, but process them
onboard and, thus, prevents communications latency inside
critical control loops. In contrast to the two microcontrollers
integrated in the Firefly’s flight control unit, this processor
will be referred to as the high-level processor from now on.
The configuration shown in Fig. 1 incorporates a Mastermind
board (Intel Core2Duo 1.86 GHz processor, 4 GB RAM).

III. SALIENCY DETECTION FRAMEWORK

A. Bayesian Approach for Saliency Computation

We consider defects as rare phenomena that may appear
on a regular surface or structure. Since they are rare, the
probability that an area is affected by a defect is rather low.

12× 17 g (PX4Flow) + 2× 5 g (HRLV-EZ4) + 16 g (LIDAR-Lite) + 12
g (uEye camera) = 72 grams



In this work, we use this low probability for detecting salient
areas in digital images.

Similarly to [21], we make use of a Bayesian approach
for computing a saliency map Σij :

Σij =
1

p(F = fij)︸ ︷︷ ︸
Independent

of target
(bottom-up saliency)

p(F = fij |C = τ)︸ ︷︷ ︸
Likelihood

p(C = τ |Lij)︸ ︷︷ ︸
Location prior︸ ︷︷ ︸

Dependent on target
(top-down knowledge)

(1)

where fij is the feature value (F) found at the image point
Lij and τ is the target class (C), i.e. the defect class in our
case. Hence, equation 1 combines top-down information with
bottom-up saliency to find the pointwise mutual information
between the feature and the target. Furthermore, since defects
do not depend on their location in the image, we drop the
rightmost term of equation 1:

Σij =
1

p(F = fij)
p(F = fij |C = τ) (2)

Using this formulation, the saliency at a given point (i, j)
decreases as the probability of feature value fij gets higher,
and increases as the probability of feature value fij for the
defect class increases.

B. Contrast-based Saliency

As said before, we consider defects as rare phenomena
that catch the visual attention of the observer during visual
inspection. Following this idea, we propose to describe
defects by means of features typically used in cognitive
models to predict human eye fixations. In this regard, one
of the most influential saliency computational models is
based on contrast [22]. The contrast levels in intensity, color
and orientation are computed as center-surround differences
between fine and coarse scales over image pyramids of
several levels; that is to say, the difference between each pixel
on a fine (or center) scale c and its corresponding pixel in
a coarse (or surrounding) scale s is calculated as M(c, s) =
|M(c) ⊗ M(s)|, where ⊗ is the center-surround operator.
Given an RGB colour image, this process is performed over:
(⊕ denotes the across-scale addition operator)

• the intensity channel I = (r+ g+ b)/3 to build the in-
tensity conspicuity map IM = ⊕cbc=ca⊕

sb
s=saN(I(c, s)),

where r, g and b are the original red, green and blue
channels;

• the color channels RG and BY defined as RG = R−G
and BY = B−Y , with R = max{0, r−(g+b)/2}, G =
max{0, g− (r+b)/2}, B = max{0, b− (r+g)/2} and
Y = max{0, (r+g)/2−|r−g|/2−b}, to build the color
conspicuity map CM = ⊕cbc=ca ⊕

sb
s=sa N(RG(c, s)) +

N(RG(c, s)); and
• the orientation channels O(θ), calculated by convolution

between channel I and Gabor filters oriented at 0◦, 45◦,
90◦ and 135◦, to build the orientation conspicuity map
OM =

∑
θN

(
⊕cbc=ca ⊕

sb
s=sa N(O(c, s; θ))

)
.

The map normalization operator N(·) is intended to highlight
saliency peaks in maps where a small number of strong

peaks of activity (conspicuous locations) is present, while
globally suppressing peaks when numerous comparable peak
responses are present. To this end: (1) the map is normalized
to a fixed range, (2) the global maximum M is found, (3)
the local maxima average m is determined, and (4) the map
is multiplied by (M −m)2.

Finally, the three conspicuity maps are normalized and
summed into the final output:

F =
1

3
(N(IM) +N(CM) +N(OM)) (3)

C. Defect Detection Performance

Figure 2(a) shows probability density functions (PDFs) for
contrast, i.e. p(F = contrastij), and contrast conditioned
on the presence of defects, i.e. p(F = contrastij |C =
defect), both determined by means of the Parzen windows
method [23] from a training image set comprising surfaces
and structures containing cracks, coating breakdown and
corrosion.

Using the statistics learnt, we have obtained the detection
results which can be viewed in Fig. 3. Moreover, we have
evaluated the detection approach using leave-one-out cross-
validation [24]: one image is selected from the dataset, while
the rest is used to obtain the feature PDFs that make up the
defect detector (training step), the selected image is next used
to validate the detector, and the process is repeated for each
image in the dataset. Final performance is shown in Fig. 2(b)
in the form of a ROC curve relating true positive rate (TPR)
and false positive rate (FPR). (FPR,TPR) points result from
thresholding the defect maps at different contrast levels and
comparing the resulting binary image with a ground truth.
The area under the curve [25] turned out to be 0.88, quite
above the performance of a random classifier.

To finish, Fig. 2(c) shows a histogram of execution times
for 320 × 240-pixel images. As can be observed, contrast
can be computed fast (on average lesss than 80 ms), and
with little variation from image to image (σ ≈ 7 ms).

IV. CONTROL ARCHITECTURE

The aerial platform implements a control architecture that
follows the supervised autonomy (SA) paradigm [18]. This
is a human-robot framework which allows the user to be
within the general platform control loop although the robot
implements a number of autonomous functions, including
self-preservation and other safety-related issues, which make
simpler the intended operations for the user, who, in this way,
can focus in accomplishing the task at hand.

The control software has been configured to be hosted
by any of the research platforms developed by Ascending
Technologies (the quadcopters Hummingbird and Pelican,
and the Firefly hexacopter, shown in Fig. 1), although it
could be adapted to other systems. In more detail, the control
software has been organized around a layered structure dis-
tributed among the available computational resources. On the
one hand, the low-level control layer implementing attitude
stabilization and direct motor control executes over the main
microcontroller as the platform firmware provided by the
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Fig. 2. (a) PDFs for contrast. (b) ROC curve for the defect detector [AUC = 0.88]. (c) Execution times.

Fig. 3. Original images and corresponding defect maps.

manufacturer [26]. On the other hand, mid-level control,
running over the secondary microcontroller, comprises height
and velocity controllers which map input speed commands
into roll, pitch, yaw and thrust orders. Lastly, the high-level
control layer implements a reactive control strategy coded
as a series of ROS nodes running over Linux Ubuntu, which
combine the user desired speed command with the available
sensor data —x, y, z velocities, height z and distances to the
closest obstacles—, to obtain a final and safe speed set-point
that is sent to the speed controllers. See [27] for the details.

Speed commands are generated through a set of robot
behaviors organized in a hybrid competitive-cooperative
framework [19]. That is to say, on the one hand, higher
priority behaviors can overwrite the output of lower priority
behaviors by means of a suppression mechanism taken from
the subsumption architectural model. On the other hand, the
cooperation between behaviors with the same priority level
is performed through a motor schema, where all the involved
behaviors supply each a motion vector and the final output
is their weighted summation. An additional flow control
mechanism selects, according to a specific input, between
the output provided by two or more behaviours.

Figure 4(a) details the behavior-based architecture, group-
ing the different behaviors depending on its purpose. A total
of four general categories have been identified for the par-
ticular case of visual inspection: (a) behaviors to accomplish
the user intention, which propagate the user desired speed
command, attenuating it towards zero in the presence of close
obstacles, or keeps hovering until the WiFi link is restored
after an interruption; (b) behaviors to ensure the platform
safety within the environment, which prevent the robot from
colliding or getting off the safe area of operation, i.e. flying
too high or too far from the reference surface that is involved
in optical flow measurements; (c) behaviors to increase the
autonomy level, which provide higher levels of autonomy to
both simplify the vehicle operation and to introduce further
assistance during inspections; and (d) behaviors to check
flight viability, which checks whether the flight can start or
progress at a certain moment in time. Some of the behaviors
in groups (a) and (c) can operate in the so-called inspection
mode. While in this mode, the vehicle moves at a constant
and reduced speed (if it is not hovering) and user commands
for longitudinal displacements or turning around the vertical
axis are ignored. In this way, during an inspection, the
platform keeps at constant distance/orientation with regard
to the front wall, for improved image capture.

To finish, the sweep behavior of group (c) makes the MAV
perform a zig-zag movement to sweep the surface in front of
the vehicle in accordance to the finite state machine outlined
in Fig. 4(b). The process is as follows: once the operator
has placed the MAV in front of the surface to survey and
a sweeping has been requested, the MAV starts moving in
horizontal direction towards the right or the left depending on
which side is farther; once the other side has been attained,
the MAV increases its height in a certain amount ∆z to
reach the next row of the sweeping; next, it moves to the
opposite side in the reverse horizontal direction. This process
repeats until the maximum height has been attained, moment
at which the vehicle descends up to a predefined height, e.g.
1 m. During horizontal motion, the MAV captures images
at a frequency compatible with its speed (e.g. 5 Hz) and
computes the previously described saliency maps looking for
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evidences of defects. Once a highly salient point is detected,
the vehicle hovers for a while in front of the defect and takes
a better, higher resolution image at close range.

V. CONCLUSIONS

This paper has described an on-going work involving an
aerial platform to be used for visual inspection of vessels,
together with a defect detector based on image saliency. For
the specific problem of visual inspection, we have described
a behaviour-based control architecture embedded within a
supervised autonomy framework which includes among its
functionalities the enhancement of image capture thanks to
the use of the saliency-based defect detector.
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