
Robotics and Autonomous Systems 156 (2022) 104226

A
D
I

o
r
t
w
d
d
t
o
f
c
h
t
t
h
a
n
s

e
M

j
(

h
0

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

LiODOM: Adaptive localmapping for robust LiDAR-only odometry
Emilio Garcia-Fidalgo ∗, Joan P. Company-Corcoles, Francisco Bonnin-Pascual,
lberto Ortiz
epartment of Mathematics and Computer Science, University of the Balearic Islands, Ctra. Valldemossa km 7.5, Palma de Mallorca, 07122, Spain
nstitut d’Investigacio Sanitaria Illes Balears, Hospital Universitario Son Espases, Ctra. Valldemossa 79, Palma de Mallorca, 07120, Spain

a r t i c l e i n f o

Article history:
Received 4 February 2022
Received in revised form 20 May 2022
Accepted 22 July 2022
Available online 28 July 2022

Keywords:
LiDAR odometry
Mapping
Localization

a b s t r a c t

In the last decades, Light Detection And Ranging (LiDAR) technology has been extensively explored as
a robust alternative for self-localization and mapping. These approaches typically state ego-motion
estimation as a non-linear optimization problem dependent on the correspondences established
between the current point cloud and a map, whatever its scope, local or global. This paper proposes
LiODOM, a novel LiDAR-only ODOmetry and Mapping approach for pose estimation and map-building,
based on minimizing a loss function derived from a set of weighted point-to-line correspondences
with a local map abstracted from the set of available point clouds. Furthermore, this work places a
particular emphasis on map representation given its relevance for quick data association. To efficiently
represent the environment, we propose a data structure that combined with a hashing scheme allows
for fast access to any section of the map. LiODOM is validated by means of a set of experiments on
public datasets, for which it compares favourably against other solutions. Its performance on-board an
aerial platform is also reported.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Self-localization and mapping, either performed simultane-
usly or in a sequential fashion, are crucial abilities for a mobile
obot to be useful in relevant applications, irrespective of whether
he robot operates fully autonomously or in a semi-autonomous
ay. As stated many years ago, odometry estimation is a fun-
amental piece within this framework. A plethora of sensing
evices have been adopted throughout the years, comprising
achometers/wheel encoders, inertial and heading sensors, time
f flight sensors, and motion estimation devices, to name but a
ew. Among all of them, laser scanners and, for a few years now,
ameras have turned out to be the sensors of choice. The latter
ave been extensively used [1,2] due to the rich perception of
he surrounding world encoded in images. Vision-based estima-
ion is however sensitive to lighting conditions, have a limited
orizontal field of view and require additional calculations to
cquire depth and shape perception. In contrast, 3D laser scan-
ers provide a 360-degree overview of the platform surroundings,
upply reliable range estimations and, especially motivated by

∗ Corresponding author at: Department of Mathematics and Computer Sci-
nce, University of the Balearic Islands, Ctra. Valldemossa km 7.5, Palma de
allorca, 07122, Spain

E-mail addresses: emilio.garcia@uib.es (E. Garcia-Fidalgo),
oan.pep.company@gmail.com (J.P. Company-Corcoles), xisco.bonnin@uib.es
F. Bonnin-Pascual), alberto.ortiz@uib.es (A. Ortiz).
ttps://doi.org/10.1016/j.robot.2022.104226
921-8890/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
the development of self-driving cars, recently have become an
affordable choice for pose estimation and mapping.

LiDAR odometry is typically stated as an optimization problem
that is solved using the Iterative Closed Point (ICP) algorithm [3]
or any of its variants. For this to happen in a satisfactory, fast
and accurate way, a set of reliable correspondences between
the current point cloud and a map must be found. A KD-tree
is a popular choice to represent the whole map [4], although
the resulting performance degrades as the number of points to
be managed increases, what makes necessary a filtering step to
screen most relevant points. An alternative is to build a local map
using a sliding window [5,6], although this might discard useful
associations that could be found if the search was performed over
a global map.

This paper proposes LiODOM, a novel LiDAR odometry and
mapping approach that is able to estimate the pose without
additional sensors, e.g. IMU and/or GPS, unlike other recent ap-
proaches [5,6]. Our approach is formulated as a non-linear op-
timization problem based on a set of point-to-line constraints,
weighted according to the distance from each point to the sensor
centre. Furthermore, we propose an efficient data structure, based
on a hashing scheme, to represent the map. As a result, a local
map can be retrieved according to the pose of the robot in
an effective way, and point cloud correspondences against the
local map can be efficiently established. This adaptive solution
naturally allows us to find correspondences between the current
point cloud and revisited places (contrary to just using a sliding
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.robot.2022.104226
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2022.104226&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:emilio.garcia@uib.es
mailto:joan.pep.company@gmail.com
mailto:xisco.bonnin@uib.es
mailto:alberto.ortiz@uib.es
https://doi.org/10.1016/j.robot.2022.104226
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

E. Garcia-Fidalgo, J.P. Company-Corcoles, F. Bonnin-Pascual et al. Robotics and Autonomous Systems 156 (2022) 104226
Fig. 1. Example of map produced by LiODOM (KITTI 05 sequence), comprising
an unoptimized global map generated during navigation (in white) and a local
map (in red) that is retrieved according to the position of the vehicle, to be
used for next pose estimation. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

window). Fig. 1 illustrates the performance of LiODOM. In brief,
the main contributions of this work are:

• A LiDAR-only odometry framework that is based on an
optimization problem supported by weighted point-to-line
factors computed from the correspondences with a local
map.
• A fast and efficient mapping approach based on a hash-

based data structure that speeds up searches and permits
to gracefully update large-scale maps.
• An extensive evaluation of the proposed approach on public

datasets, including a comparison with other state-of-the-art
methods.
• An additional evaluation of LiODOM on-board an aerial plat-

form where it provides, among others, speed estimations
that are used inside velocity control loops, what shows
LiODOM’s capability to operate in real time.
• A final contribution is the availability for the community of

the source code1 of our approach.

The rest of the paper is organized as follows: Section 2
overviews most relevant works in the field; the proposed frame-
work is introduced in Sections 3, 4 and 5; Section 6 reports on
the results obtained; to finish, Section 7 concludes the paper and
suggests future research lines.

2. Related work

Laser scanners and vision cameras are the two sensor modal-
ities that have attracted the largest number of researchers in
the last years because of their respective success stories and
well-known advantages regarding motion estimation — briefly
speaking, reliable and scale-aware depth measurements in the
first case, and low weight, low power and low cost in the second
case. Although LiODOM belongs to the first class, in the following,
we not only revise most recent laser-based works close to our so-
lution, but also others relying on imaging sensors in order to gain

1 http://github.com/emiliofidalgo/liodom.
2

perspective on the respective methodologies and achievements,
without being intent to be exhaustive. Finally, we also consider
map indexing.

2.1. LiDAR-based solutions

Most recent approaches carry out LiDAR-based odometry in
combination with an IMU for higher accuracy. These solutions
are typically regarded as loosely- and tightly-coupled methods [6,
7]. Loosely-coupled methods estimate the state from each sen-
sor separately. Arguably the most well-known method that falls
into this category is LiDAR Odometry and Mapping (LOAM) [4],
where edges and surfaces are detected and registered to a map
through point-to-line and point-to-plane constraints within an
optimization framework. In LOAM, an IMU can be optionally used
to de-skew the input point cloud and provide a prior motion
estimate. LOAM extensions can be found to be used specifically
on ground vehicles [8] or with solid-state LiDARs [9,10]. More
recently, a lightweight LOAM version named FLOAM [11] has
been proposed. This is probably the closest work to our solution.
In this respect, LiODOM introduces a simpler but more efficient
pose optimization scheme that is based on LOAM edges, resulting
into robust estimations, as it is shown in Section 6. Besides that,
FLOAM uses downsampled global feature maps that are stored
in 3D KD-trees. Our novel hashing-based mapping approach al-
lows for a faster interaction with the map, especially regarding
updates. Rozenberszki et al. [12] also describes a LiDAR-based
approach. However, in contrast to our solution, this method as-
sumes the existence of a predefined map and relies on a place
recognition method. Finally, within this class of solutions, [13,14]
propose a data fusion scheme based on an Extended Kalman Filter
(EKF).

Tightly-coupled methods fuse sensor data jointly, either
through optimization [5,6] or filtering [7,15]. In this regard, Ye
et al. [5] introduces LIOM, a tightly-coupled odometry and map-
ping approach which jointly minimizes LiDAR and IMU obser-
vations in a sliding window. Despite its good performance, it is
computationally expensive, making difficult its use in practical
situations. In a more recent work [7], the same authors opt for
an iterated Error-State Kalman Filter (ESKF), resulting into a faster
solution. A recent work [6] introduces LIO-SAM as a new tightly-
coupled method. In LIO-SAM, LiDAR-inertial odometry is stated
as a factor graph, allowing an easy incorporation of any type of
observation as a constraint, such as loop closures, GPS samples
or IMU measurements. In a very recent work [16], the authors
employ pre-integrated IMU readings to de-skew the input point
cloud. Unlike the approaches surveyed so far, we tackle the
problem of pose estimation using solely a LiDAR.

2.2. Vision-based solutions

In the last decades, cameras have been extensively used for
mapping and localization, specially motivated by the low cost
of cameras, the constant increase in computing power and the
richness of the sensor data provided. These solutions are typi-
cally classified into feature-based (indirect) and direct methods,
according to the strategy employed for data association across
images. On the one hand, feature-based solutions utilize a set
of feature points to reconstruct the world around the sensor.
In this regard, Klein and Murray introduced PTAM [17], where
tracking and mapping procedures run in parallel in two different
threads. Following these ideas, Strasdat proposed a number of
solutions [18–20] that served as a basis for ORB-SLAM [21–23],
which can be considered as one of the most popular solutions in
Visual SLAM. In LiODOM, we follow the computational approach
adopted for these solutions, i.e. two threads run in parallel for

http://github.com/emiliofidalgo/liodom

E. Garcia-Fidalgo, J.P. Company-Corcoles, F. Bonnin-Pascual et al. Robotics and Autonomous Systems 156 (2022) 104226

f
p

o
o
m
e
a
s
t
b
c
r

T
o
c
c

2

b
e
t
t
g
i
s
m
t
s
l
c

3

A
c
i
(
t
m
i
r

c
r
p
c
r
a
e

Fig. 2. Overview of LiODOM.

eature extraction and pose estimation; additionally, a set of edge
oints are extracted from the point cloud.
On the other hand, direct methods enable 3D reconstructions

f the world of higher accuracy, since they use a larger amount
f image pixels and minimize photometric errors for pose esti-
ation. In this category, several solutions have been proposed,
.g. DTAM [24], Kinect Fusion [25], DVO [26], Elastic Fusion [27]
nd Kintinuous [28]. However, they typically rely on a GPU to
olve the pose estimation problem, which is out of the scope of
his work. In comparison with vision-based approaches, LiDAR-
ased solutions are less affected by illumination changes, they
an provide a full overview of the surroundings and can supply
eliable range estimations.

A final class of solutions combine LiDAR and cameras [29–31].
he main objective of these methods is to obtain the advantages
f both types of sensors, although at the expense of additional
alibration and synchronization processes that can significantly
omplicate their use together.

.3. Map indexing

As mentioned above, establishing a set of correspondences
etween the input scan and a map is of prime importance for
fficient pose estimation. Some authors have opted for indexing
he points of a global map using a tree-based approach [4], al-
hough usually these solutions do not scale well. In our work, the
lobal map is devised as a disjoint partition of the 3D space, and,
nspired by other approaches [32,33], it is indexed using a hashing
cheme. An alternative for fast data association is building a local
ap from a sliding window [5,6], instead of matching directly

o a global map, but this option tends to discard useful corre-
pondences. In this matter, LiODOM also introduces an adaptive
ocal map mechanism, which can be seen as an alternative to the
lassical local mapping paradigm.

. System overview

For a start, we define a sweep as a set of 360-degree 2D scans.
sweep received at time i is denoted as Si. We also define two

oordinate systems: (1) L, the LiDAR coordinate system, which
s a frame attached to the geometric centre of the sensor; and
2) W , the world coordinate system, which coincides with L at
he beginning. We denote by T A

B ∈ SE(3) the transformation that
aps a point pB ∈ R3 expressed in B to a point pA ∈ R3 expressed

n A. The rotation matrix and the translation vector of T A
B are

espectively denoted by RA
B ∈ SO(3) and tAB ∈ R3.

Fig. 2 illustrates LiODOM. As in other works [4,5], our solution
onsists of two main components, odometry and mapping, which
un concurrently: while the odometry module (Section 4) com-
utes a set of features EL

i (LOAM edges) from Si and estimates the
urrent pose of the LiDAR TW

Li
, the mapping module (Section 5)

egisters the resulting edges to a global map Mi and generates
n adaptive local map mi to be employed in the subsequent pose
stimation step.
3

Algorithm 1 LiDAR Odometry

Input: Si, TW
Li−1

, TW
Li−2

, mi−1

Output: EL
i , T

W
Li

1: EL
i ← set of edges from Si

2: T W
Li
← T̂ W

Li
≡ initial transformation estimate [Eq. (7)]

3: for n iterations do
4: for pLij ∈ EL

i do
5: pWj ← TW

Li
pLij [Eq. (2)]

6: N(pWj)← 5 NN of pWj in mi−1

7: if N(pWj) is a line then
8: Compute de(pWj , l(pWj)) [Eq. (3)]
9: Compute residual ϱe(pWj , l(pWj)) [Eq. (4)]

10: Add residual ϱe(pWj , l(pWj))
11: to the optimization problem
12: Optimize pose TW

Li
[Eq. (6)]

4. LiDAR odometry

The LiDAR odometry module is organized into two synchro-
nized execution threads that, hence, decouples feature extraction
from pose estimation. Both are described next.

4.1. Feature extraction

For a start, each sweep Si is divided into its different scans,
discarding at the same time those points whose range do not fall
within a certain interval [rmin, rmax], which has to be configured
accordingly to the sensor operating and noise characteristics.
Each pre-processed scan is next considered, selecting a number
of key points to reduce the computational requirements. In this
work, we make use of LOAM edge features, given the utility they
have shown in other works and their simpler computation [4,8,
11,34]. Besides, to select the best features, in LiODOM we also
calculate a local curvature measure cj for each point pLij [4] as
follows:

cj =
1

|Ω| · ∥pLij ∥

∑
k∈Ω,k̸=j

∥pLij − pLik ∥ , (1)

being Ω a set of consecutive (i.e. co-planar) points in the vicinity
of pLij belonging to the same scan of the sweep Si. In this way, we
take advantage of the typical larger intra-beam resolution against
the inter-beams resolution, to get more distinctive features [11].
Moreover, to distribute edges throughout the environment, a scan
is further divided into equally-sized sectors, and a maximum
number of edges is set for every sector. Unlike [4], we split
each scan into 8 sectors and choose a maximum of 10 edges
per sector after sorting them in decreasing order of curvature c.
Furthermore, the selection applies non-maxima suppression, i.e. a
point is chosen as an edge if none of its neighbours has been
already selected. The result of this procedure is a set of edges EL

i
chosen from sweep Si.

4.2. Pose optimization

Let us consider the transformation TW
Li

from the LiDAR at time
i to the world. Then, every point pLij ∈ EL

i projects into the world
frame W as:

pW = TWpLi = RWpLi + t W , (2)
j Li j Li j Li

E. Garcia-Fidalgo, J.P. Company-Corcoles, F. Bonnin-Pascual et al. Robotics and Autonomous Systems 156 (2022) 104226

v
S
a
f
b
f
p
c
S

w
i

t
s
m

ϱ

w

ω

ˆ

being RW
Li

and tWLi the respective rotation matrix and translation
ector of TW

Li
. We denote the set of transformed edges as EW

i .
ubsequently, a set of point-to-line correspondences between EW

i
nd a local map are computed for pose estimation. We have opted
or this solution rather than using, for instance, a global map,
ecause it turns out to be more computationally stable as more
rames are processed. In LiODOM, that local map is not built after
ose estimation in a sequential way as in [5,6], but it is built
oncurrently with pose estimation by the mapping module (see
ection 5).
Let us assume now the existence of a local map mi−1 at time

i − 1, which is a subset of the global map Mi−1. This map mi−1
contains the points in Mi−1 closest to the LiDAR according to the
latest pose estimate TW

Li−1
. For each point pWj ∈ EW

i , we obtain
the k nearest points in mi−1, where k = 5 in this work. We now
denote this set as (N(pWj) and the nth nearest neighbour of pWj
as (Nn(pWj). Next, we assess whether points in (N(pWj) are aligned
by analysing their scatter matrix [9]. If the largest eigenvalue of
this matrix is, at least, three times the second largest eigenvalue,
we consider that a valid point-to-line correspondence can be
established between pWj and the line l(pWj) resulting from (N1(pWj)
and (N2(pWj). We then calculate the point-to-line distance de as

de(pWj , l(pWj)) =

(
pWj − N1(pWj)

)
× N12

∥N12 ∥

, (3)

ith N12 = N1(pWj)−N2(pWj). At this point, it is worth noting that
ncreasing k leads to higher computational times for calculating
the scatter matrix, without necessarily ensuring additional insight
on whether the nearby points lie on a line in a local sense.

LiODOM, as an odometer, optimizes only the current pose of
he LiDAR TW

Li
. Within the optimization framework, each corre-

pondence provides a constraint between TW
Li

and the local map
i−1, whose residual ϱe is computed as:

e(pWj , l(pWj)) = ωj de(pWj , l(pWj)) , (4)

here ωj is a weighting term defined as:

j = 1−
rj − rmin

rmax − rmin
, (5)

being rj the range returned by the LiDAR for edge pLij . The ra-
tionale behind this factor is that LiDARs tend to decrease their
accuracy at longer distances and, thus, we give more importance
to correspondences established at closer distances. We then com-
pute the optimal transformation TW

Li
as the minimizer of the loss

function J (̃T W
Li

, Υ):

J (̃T W
Li , Υ) =

1
2

∑
j∈Υ

ρ

(ϱe

(̃
TW
Li p

Li
j , l

(̃
TW
Li p

Li
j

))2)
TW
Li = min

T̃ W
Li

J (̃T W
Li , Υ) (6)

where Υ is the set of correspondences established between EW
i

and the local map mi−1, and ρ is a Huber loss function to reduce
the influence of outliers. The system of non-linear equations is
solved by means of the Levenberg–Marquardt algorithm using the
Ceres Solver library [35], using the transformation T̂ W

Li
as initial

guess:

TW
Li = TW

Li−1 T̂
Li−1
Li

= TW
Li−1T

Li−2
Li−1
= TW

Li−1

(
TW
Li−2

)−1
TW
Li−1 , (7)

i.e. we assume the same motion as for the previously estimated
pose. Although LiODOM deals only with LiDAR data, it is clear
4

that any additional motion estimate, e.g. from an IMU, can be
incorporated at this point.

The full LiDAR odometry procedure is stated algorithmically in
Alg. 1. In our experiments, 1 or 2 refining iterations are enough,
i.e. n = 2 or 3 at line 3 of Alg. 1.

5. LiDAR mapping

The registration of the extracted edges EL
i on the global map

Mi is performed by the mapping module using the last optimized
pose TW

Li
. This module also generates the corresponding local map

mi as described next.

5.1. Map representation

Given the high frequency at which the map must be accessed,
the type of data structure chosen to represent 3D space becomes
crucial for fast operation. A single KD-tree has been typically used
to this end [4]. However, this option presents several drawbacks:
on the one hand, the full tree tends to change as points are added
or deleted to/from the tree, and, on the other hand, the KD-tree
performance decreases as more points need to be managed [4].
To overcome these issues, in LiODOM we introduce an efficient
hashing data structure for representing the map, taking inspira-
tion from other recent works [32,33]. To be more specific, the
3D space is partitioned into a set of disjoint cuboids of a fixed
size that we name cells. A cell Cj is represented by its geometric
centre, denoted by (cjx, cjy, cjz), and includes all 3D points whose
coordinates fall into its limits. We define a map at time i as
Mi = {Hi,Ci}, where Hi is a hash table and Ci is the set of existing
cells up to time i. The table Hi allows us to rapidly get access to
a specific cell Cj using a hash function of its coordinates, defined
by:

H(Cj) = (cjx ⊕ (cjy ≪ 1))⊕ (cjz ≪ 2) , (8)

where ⊕ and ≪ are, respectively, the bitwise XOR and the left
shift operators. This function has been selected in order to min-
imize, as much as possible, hash collisions. That is to say, if bits
of a binary word have roughly 50% chance of being 0 or 1, i.e. as
randomly distributed as possible, the bitwise XOR between such
binary words results into another word also following a random
distribution. Furthermore, since the bitwise XOR is a symmetric
operation, the order of the elements in the hash code is lost.
To break this symmetry, we use the shift operator, at a limited
computational cost.

5.2. Map updates

In LiODOM, map updates are performed once per sweep, being
the set of edges EL

i , extracted from Si, and the last optimized
transformation TW

Li
the input data. Unlike other approaches [4],

where the raw point cloud is used for mapping, in our approach,
the map is built using directly the edges to speed up the mapping
procedure, resulting into more sparse maps. Initially, every point
pLij ∈ EL

i is transformed to world coordinates using TW
Li

and (2).
Next, for each point pWj = (x, y, z), we compute the geometric
centre of the cell Cq in which the point should be stored as:⎡⎢⎢⎢⎣
cqx

cqy

cqz

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

⌊
x/sxy

⌋
sxy + 1

2 sxy⌊
y/sxy

⌋
sxy + 1

2 sxy

⌊z/sz⌋ sz + 1
2 sz

⎤⎥⎥⎥⎦ , (9)

where sxy and sz are the metric cell sizes for the corresponding
dimension. We next check if the cell C is already in the map
q

E. Garcia-Fidalgo, J.P. Company-Corcoles, F. Bonnin-Pascual et al. Robotics and Autonomous Systems 156 (2022) 104226

e
W
a
t

L
F
o
a
s
p
i

6

f
o
f
h
g
w
i
a
s
a
t
d
k

6

l
b
f
t
r
b
K
r
I
p
e

Algorithm 2 LiDAR Mapping

Input: EL
i , T

W
Li
, Mi−1

Output: Mi, mi
1: Mi ← Mi−1

2: for pLij ∈ EL
i do

3: pWj ← TW
Li
pLij [Eq. (2)]

4: Cq ← cell where pWj should be [Eq. (9)]
5: if H(Cq) ̸∈ H then
6: Create new cell Cn using Cq coordinates
7: Add pWj to Cn
8: Update Mi adding Cn to C
9: Update Mi adding H(Cq) to H

10: else
11: Retrieve cell Cq using H(Cq)
12: Update Mi adding pWj to Cq
13: if Cq has more points than τ then
14: Update Mi filtering Cq using a 3D voxel grid
15: CLi ← cell where the LiDAR should be [Eq. (9)]
16: mi ← ∅

17: for Ci ∈ Neighbours of CLi in Mi do
18: mi ← mi ∪ Ci

19: for j ∈ {1, 2, 3} do
20: mi ← mi ∪ EW

i−j

by querying the hash table H using the key H(Cq). If this is the
case, the point is added to the existing cell. Otherwise, a new cell
Cn is created with point pWj as seed, to be added next to C and
indexed on H by H(Cn). Finally, modified cells exceeding a certain
number of points are filtered using a 3D voxel grid. Note that
our data structure allows us to rapidly update just the required
areas of the environment, avoiding the update of the whole map
at each iteration. This fact contributes to speed up the mapping
procedure, as will be shown in the experiments.

5.3. Adaptive local map computation

Lastly, the mapping module generates a local map mi, which
contains the points of Mi within a certain range from the current
LiDAR pose. Assuming a moderate motion between two consecu-
tive sweeps, these points are enough to find correspondences for
the next pose estimation step. To build the local map, we first
retrieve the cell CLi where the LiDAR is located at that moment
using its current position TW

Li
and (9). Next, assuming a 3D grid

arranged overMi, neighbouring cells of CLi up to a certain distance
are further retrieved from Mi, and their corresponding points are
merged to form the local map mi. This operation results to be
very fast due to the proposed hashing structure. Points on mi are
finally organized into a KD-tree to speed up nearest neighbour
search. Note that this tree is very simple, as it just contains a small
subset of the total map points, in contrast to managing the whole
global map [4].

On the other side, we refer to this local map as adaptive since
it always covers a specific area of the environment, contrary to a
local map built by aggregation of a sliding window [5,6]. Besides,
it provides us with correspondences with revisited areas of the
environment in a natural way. Additionally, the availability of mi
avoids us to search for correspondences against the whole map,
as done by other solutions [4]. Finally, to avoid reduced amounts
of points from unexplored areas, we always add the last three
sweeps to mi. The complete mapping procedure is outlined in Alg.

2.

5

Table 1
Parameters values and section where they are defined.
rmin (Section 4.1) 3.0 k (Section 4.2) 5
rmax (Section 4.1) 75.0 Sxy (Section 5.2) 25
Scan sectors (Section 4.1) 8 Sz (Section 5.2) 20
Edges per sector (Section 4.1) 10 Sweeps in mi (Section 5.3) 3

6. Experimental results

In this section, we report on the results of several experi-
ments conducted to evaluate LiODOM, including a comparison
with other solutions. A laptop featuring an Intel Core i7-10750H
@2.6 GHz, 16 GB RAM has been used in all cases.

6.1. Methodology

We validate our approach using the KITTI odometry bench-
mark [36], as usual in the field [11,37,38]. This dataset consists of
22 sequences collected using a Velodyne HDL-64E sensor. Eleven
of these sequences include GPS poses that can be used as ground
truth. The average translational (%) and rotational (deg/100 m)
rrors are adopted in the following as main performance metrics.
e additionally consider the Absolute Trajectory Error (ATE),

lthough it rather focuses on the global consistency of the whole
rajectory and thus it is more appropriate for SLAM systems.

To further validate LiODOM, we compare it with other pure
iDAR-based odometry and also with SLAM solutions, namely
LOAM [11], ISC-LOAM [34] and LeGO-LOAM [8]. We are aware
f the existence of recent fusion-based [5,6] or even semantic-
ided [37] solutions. They are not considered in this evaluation
ince, in contrast to our method, they imply additional com-
lexities, such as synchronization and calibration procedures or
ncreasing computational resources.

.2. Algorithm configuration

LiODOM has been run several times against the K05 sequence,
ine-tuning them towards increasing the localization accuracy, in
rder to find a suitable set of parameters. The values obtained
or the most relevant parameters can be found in Table 1. They
ave been kept constant in all the remaining experiments, what,
iven the performance achieved, shows that this configuration
orks reasonably well and is able to tolerate different operat-

ng conditions: two different LiDAR devices, different processors
nd different datasets taken from different environments. This
et-up represents, thus, a good trade-off between performance
nd accuracy. Nonetheless, those parameters with an impact on
he computational complexity could need specific modifications
epending on the available computational resources in order to
eep response times at a reasonable value.

.3. Odometry performance

Table 2 summarizes the results obtained in terms of trans-
ational and rotational errors. Results for FLOAM were obtained
y ourselves using its open source implementation, while results
or ISC-LOAM and LeGo-LOAM are directly reported from, respec-
ively, [37,38]. As can be observed, LiODOM achieves competitive
esults in all sequences in terms of translation error. This can
e observed even in sequences comprising loop closures, such as
05, K06 and K07, where our approach achieves the second best
esults, sometimes very close to complete SLAM solutions like
SC-LOAM. We obtain, on average, 1.038% drift in translation, out-
erforming the other solutions in this matter. Regarding rotation
rror, again our solution leads to the lowest errors in most of the

E. Garcia-Fidalgo, J.P. Company-Corcoles, F. Bonnin-Pascual et al. Robotics and Autonomous Systems 156 (2022) 104226

l
s
f
r
s
m
s
p
d
T
i
h

Table 2
Average translational and rotational errors for the KITTI odometry benchmark. Best results are shown in bold red and second best
in blue.

Translational error (%) Rotational error (deg/100 m)

FLOAM ISC-LOAM LeGO Ours FLOAM ISC-LOAM LeGO Ours

K00 0.861 1.020 2.170 0.857 0.349 0.420 1.050 0.348
K01 1.309 2.920 13.400 1.301 0.128 0.630 1.020 0.129
K02 0.952 1.670 2.170 0.947 0.310 0.540 1.010 0.309
K03 1.267 1.150 2.340 1.262 0.227 0.720 1.180 0.226
K04 1.417 1.500 1.270 1.411 0.010 0.560 1.010 0.009
K05 0.835 0.810 1.280 0.834 0.360 0.370 0.740 0.359
K06 0.835 0.760 1.060 0.834 0.332 0.410 0.630 0.331
K07 0.883 0.560 1.120 0.881 0.617 0.430 0.810 0.614
K08 0.869 1.200 1.990 0.864 0.332 0.500 0.940 0.331
K09 1.033 1.400 1.970 1.029 0.317 0.590 0.980 0.318
K10 1.203 1.870 2.210 1.196 0.287 0.620 0.920 0.288

Average 1.042 1.351 2.816 1.038 0.297 0.526 0.935 0.296
Fig. 3. Examples of trajectories estimated for some sequences of the KITTI odometry benchmark. The ground truth is shown as a red dashed line, while FLOAM and
LiODOM estimates are respectively shown as blue and green lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
sequences. On average, the rotational error of LiODOM is 0.296%
deg/100 m, which represents again the lowest average error.

Table 3 reports on the ATE for the KITTI sequences that contain
oop closures. Again, results for FLOAM were obtained by our-
elves, while results for ISC-LOAM and LeGo-LOAM are reported
rom, respectively, [37,39]. LiODOM again achieves competitive
esults in all sequences despite it is actually a pure odometry
ystem and, therefore, does not take any advantage from global
ap optimization nor from loop closures. In contrast to other
olutions based on a sliding window policy, our pose estimation
rocedure makes use of an adaptive local map covering, in all
irections, the surroundings of the LiDAR at its current position.
his strategy allows our approach to find associations/matchings
n a wider area than just the one covered by the previous frames,
ence effectively reducing the pose estimation error. On average,
6

the ATE for LiODOM results to be 3.535 m, which represents the
second best performance among the different methods consid-
ered. By way of illustration, Fig. 3 shows the resulting trajectory
estimates from our approach and from FLOAM for several KITTI
sequences.

In the following, we analyse the computational complexity
of LiODOM. To this end, we choose dataset K02, the largest
dataset considered in this work. Average processing times for
every odometry stage can be found in Figs. 4 and 5, as they are
the stages that operate online within a real platform. The capabil-
ities of the mapping module, which is executed as a standalone
procedure, are evaluated in the next section. In both figures, we
compare LiODOMwith FLOAM as a representative of the solutions
based on LOAM edges and surfaces as features [4,8,11,34] (notice
that the other solutions considered in this section can also be

E. Garcia-Fidalgo, J.P. Company-Corcoles, F. Bonnin-Pascual et al. Robotics and Autonomous Systems 156 (2022) 104226

L

s
t
L
f
m
m
(

Fig. 4. Average processing times of the feature extraction stages of FLOAM and
iODOM. The blue dashed line corresponds to the mean value for each case.

Fig. 5. Average processing times of the pose optimization stages of FLOAM and
LiODOM. The blue dashed line corresponds to the mean value for each case.

regarded as derivatives of LOAM). Regarding feature extraction,
Fig. 4 shows that LiODOM presents lower extraction times than
FLOAM. This stage takes, on average, 10.36 ms in contrast to the
16.92 ms required by FLOAM. Alternatively, Fig. 5 shows pose
optimization times for each, including the search for correspon-
dences within the respective maps. As can be observed, LiODOM
converges, in general, faster than FLOAM, taking, on average,
48.73 ms in contrast to 60.12 ms. Considering the measured
feature extraction and pose optimization times, the resulting
overall processing times are 59.09 ms per frame for LiODOM and
77.04 ms per frame for FLOAM, which means, respectively, frame
rates of around 17 Hz and 13 Hz. This means that LiODOM is
about 1.3 times faster than FLOAM.

Fig. 6 reports on the number of features per frame that each
olution has to handle. As can be observed, the differences be-
ween both approaches are more evident in this matter, since
iODOM only uses edges and, therefore, the required number of
eatures is considerably less, with the corresponding reduction in
emory requirements without noticeable differences in perfor-
ance, slightly outperforming FLOAM for a number of datasets

as shown in Tables 2 and 3).
7

Fig. 6. Number of features per frame.

Table 3
Absolute Trajectory Error (m) for the KITTI dataset. Best results are shown in
bold red and second best in blue.

FLOAM ISC-LOAM LeGO Ours

K00 5.137 1.600 6.300 7.135
K02 9.294 4.770 14.700 9.754
K05 2.546 2.490 2.800 0.322
K06 0.934 1.030 0.800 0.956
K07 0.498 0.560 0.700 1.518
K08 4.344 4.880 3.500 4.592
K09 2.144 2.310 2.100 0.470
Average 3.557 2.520 4.414 3.535

Table 4
Absolute Trajectory Error (m) for the KITTI dataset with and without the
weighting term.

With Without

K00 7.135 8.488
K02 9.754 11.613
K05 0.322 4.057
K06 0.956 1.024
K07 1.518 1.638
K08 4.592 5.780
K09 0.470 3.632

Average 3.535 5.176

To finish, we consider the effect of the weighting term defined
in Eq. (5), which is related to the range returned by the LiDAR,
as this results to be a key component of the pose optimization
procedure of LiODOM. In this regard, Table 4 reports on again the
ATE for the KITTI sequences that contain loop closures, but with
and without using the weighting factor. As can be observed, the
weighting term improves the performance of LiODOM in all cases:
all in all, the use of the weighting factor results into an average
ATE of 3.535 m, in contrast to LiODOM without using this term,
which leads to an average ATE of 5.176 m.

6.4. Mapping performance

In this section, we report on several results intended to assess
the efficiency of the mapping approach adopted in LiODOM. In
a first experiment, we measure the times required to update
the global map and to build the local maps using our hashing-
based data structure and a KD-tree. The K05 sequence was chosen
in this case for computational reasons. The results are shown

E. Garcia-Fidalgo, J.P. Company-Corcoles, F. Bonnin-Pascual et al. Robotics and Autonomous Systems 156 (2022) 104226

o
s
b
i
w
e
c
G
c
t

H

b
p

Fig. 7. Performance of the LiODOM mapping structure vs. a KD-tree.

Table 5
Entropy values for the hash table entry lengths for the KITTI sequences including
loops.

Baseline Eq. (8) (LiODOM)

K00 4.181 5.287
K02 4.409 5.645
K05 3.334 4.933
K06 3.766 4.464
K07 3.407 4.395
K08 3.457 5.321
K09 3.259 4.889

Average 3.688 4.990

in Fig. 7. As can be observed, the time required to update the
global map by our approach remains roughly constant along the
whole sequence. Contrarily, the running times for the KD-tree
approach grow as more frames are processed, which can lead
to an impractical operation. This behaviour can be attributed to
the fact that, unlike our approach, the whole tree needs to be
rebuilt on each update. The differences are less evident as for the
times required to build the local maps, where both approaches
are very fast, although our approach seems to perform slightly
better.

As a last experiment, in this section, we evaluate the quality
f LiODOM hash function and the frequency of collisions when
toring map points. In the ideal case, the hash function should
e such that the number of elements associated to each bucket,
.e. the hash table entry lengths, follow a uniform distribution,
hat means that the hash function spreads reasonably well the
lements between the table entries and therefore the number of
ollisions when accessing the map for updates is at a minimum.
iven a distribution probability, its entropy H can be used to
heck how close it is to the uniform distribution. For the case of
he hash table, H would be defined as:

(m) = −
n∑

k=1

p(k) log(p(k)) , (10)

eing n the number of buckets in the hash table and p(k) the
robability that a new map point lies at the kth table entry. p(k)

can thus be calculated as the number of data items associated to
the entry divided by the total number of items stored in the table.
The higher the value of the entropy H , the more uniformly are
spread the points in the hash table and, therefore, the lower the
probability of collision. Under this context, in this experiment, we
8

Table 6
ATE (m) and velocity RMSE (m/s) for the experiments on-board a UAV.
Experiment ATE Velocity RMSE

LiODOM FLOAM (x / y / z)

1 0.176776 0.657013 0.042/0.051/0.075
2 0.276960 0.613781 0.071/0.079/0.101
3 0.204852 0.637984 0.048/0.121/0.141
4 0.314232 0.572278 0.088/0.085/0.129
5 0.199806 0.816480 0.086/0.108/0.066
6 0.164287 0.675760 0.063/0.068/0.074

compute the entropy H of the global map generated by LiODOM
after processing a full sequence. We compare the LiODOM hash
function, i.e. Eq. (8), with a baseline consisting on simply adding
the hashes of the three cell coordinates. We employ again the
sequences of the KITTI dataset including loops, since they are
typically more prone to produce collisions given that they revisit
previously seen places. The results are shown in Table 5. As can
be observed, LiODOM in combination with the proposed hash
function leads to higher entropy values than the alternative,
simpler function in all cases.

6.5. Experiments on-board an aerial platform

Finally, we also report on some experiments involving an
aerial platform intended for visual inspection tasks [40]. This
platform has been recently fitted with an Ouster OS1-64 3D
laser scanner that feeds LiODOM. The performance evaluation
has been carried out inside the Aerial Robotics laboratory of the
University of the Balearic Islands, which is equipped with an
OptiTrack Motion Capture system (MOCAP) that supplies ground
truth data during the tests. Table 6 shows the ATE obtained
using LiODOM and FLOAM for six different experiments mixing
diverse motion in the three axes. As can be noticed, the ATE
values from LiODOM range from 16 to 31 cm, indicating that
position estimates closely resemble the ground truth. The ATE
values from FLOAM are higher for all six experiments, ranging
between 57 and 68 cm. On the other side, Fig. 8 compares,
against the ground truth and along the respective trajectories, the
position estimates of LiODOM and FLOAM for all experiments. In
this case, estimates for the X and Y axes mostly coincide with
the ground truth, while, as also happens for other LiDAR-based
odometry frameworks [8,11,34], some drift can be appreciated
in the Z-axis estimates. Compared to the position estimates pro-
vided by FLOAM, the LiODOM estimates are closer to the ground
truth, which is consistent with the lower ATE values shown in
Table 6.

Within this robotic system, developed under the Supervised
Autonomy paradigm, LiODOM is expected to supply not only
pose estimates, but also velocity estimates, which constitute the
basis for platform control in this case. To show the performance
of LiODOM in this regard, Table 6 additionally reports on the
velocity estimation results against the ground truth for the same
six experiments as above, in the form of Root Mean Square Errors
(RMSE) separately for each axis. The reported values indicate a
very high accuracy in the estimation of X and Y velocities, and
a slightly larger error for the Z axis. To finish, Fig. 9 compares
graphically the vehicle velocities estimated by LiODOM with the
values provided by the MOCAP for the six experiments. As also
observed for the position estimates, the X and Y velocity esti-
mates coincide almost perfectly with the ground truth, while the
Z-axis estimates present a slightly larger error.

E. Garcia-Fidalgo, J.P. Company-Corcoles, F. Bonnin-Pascual et al. Robotics and Autonomous Systems 156 (2022) 104226

a
t
i
a
p
e
e
l

Fig. 8. Position estimates and trajectories for the six experiments running LiODOM (green) and FLOAM (red) on-board an aerial platform. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
7. Conclusions and future work

This paper proposes LiODOM, a novel LiDAR-only odometry
nd mapping approach. Our solution fundamentally consists of
wo parts working concurrently: (1) the odometry module, which
s in charge of extracting a set of edges from the input sweep
nd estimating the current pose of the LiDAR; and (2) the map-
ing module, which builds and maintains a global map of the
nvironment, and also generates a local map employed for pose
stimation. Pose estimation is conceived as an optimization prob-
em which involves a set of weighted point-to-line constraints
9

between the current sweep and a local map. We have also de-
scribed a data structure based on a hashing scheme which allows
us to rapidly get access to any part of the map and manage it in
an efficient way. Furthermore, this structure is also employed to
obtain an adaptive local map, used to facilitate data association.
Our experiments show that LiODOM compares favourably against
other state-of-the-art approaches, and that it can be used for both
position and velocity estimation.

Despite its good performance, LiODOM is an odometer and
unavoidably drifts. Therefore, we will consider extending the
ideas proposed in this paper to develop a complete SLAM/3D

E. Garcia-Fidalgo, J.P. Company-Corcoles, F. Bonnin-Pascual et al. Robotics and Autonomous Systems 156 (2022) 104226

a

r
s

D

c
t

A

W
(
o
v
b

A

o

R

Fig. 9. Velocity estimates for the experiments running LiODOM on-board an aerial platform. LiODOM estimates are shown in green, while the ground truth is shown
s a grey dashed plot.
econstruction system, incorporating other motion estimation
ensors into a fusion scheme for enhanced performance.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

This work is partially supported by EU-H2020 project BUG-
RIGHT2 (GA 871260) and by project PGC2018-095709-B-C21

funded by MCIN/AEI/10.13039/501100011033 and ERDF ‘‘A way
f making Europe’’). This publication reflects only the authors
iews and the European Union is not liable for any use that may
e made of the information contained therein.

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.robot.2022.104226.

eferences

[1] R. Mur-Artal, J.D. Tardos, ORB-SLAM2: An open-source SLAM system for
monocular, stereo, and RGB-D cameras, IEEE Trans. Robot. 33 (5) (2017)
1255–1262.
10
[2] M. Ferrera, A. Eudes, J. Moras, M. Sanfourche, G. Le Besnerais, OV2SLAM:
A fully online and versatile visual SLAM for real-time applications, IEEE
Robot. Autom. Lett. 6 (2) (2021) 1399–1406.

[3] P. Besl, N.D. McKay, A method for registration of 3-D shapes, IEEE Trans.
Pattern Anal. Mach. Intell. 14 (2) (1992) 239–256.

[4] J. Zhang, S. Singh, LOAM: Lidar odometry and mapping in real-time, in:
Robot.: Sci. Syst., Vol. 2, 2014.

[5] H. Ye, Y. Chen, M. Liu, Tightly coupled 3D lidar inertial odometry and
mapping, in: IEEE Int. Conf. Robot. Autom., 2019, pp. 3144–3150.

[6] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, R. Daniela, LIO-SAM:
Tightly-coupled lidar inertial odometry via smoothing and mapping, in:
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020, pp. 5135–5142.

[7] C. Qin, H. Ye, C.E. Pranata, J. Han, S. Zhang, M. Liu, LINS: A lidar-inertial
state estimator for robust and efficient navigation, in: IEEE Int. Conf. Robot.
Autom., 2020, pp. 8899–8906.

[8] T. Shan, B. Englot, LeGO-LOAM: Lightweight and ground-optimized lidar
odometry and mapping on variable terrain, in: IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2018, pp. 4758–4765.

[9] J. Lin, F. Zhang, Loam livox: A fast, robust, high-precision LiDAR odometry
and mapping package for LiDARs of small FoV, in: IEEE Int. Conf. Robot.
Autom., 2020, pp. 3126–3131.

[10] K. Li, M. Li, U.D. Hanebeck, Towards high-performance solid-state-LiDAR-
inertial odometry and mapping, IEEE Robot. Autom. Lett. 6 (3) (2021)
5167–5174.

[11] H. Wang, C. Wang, C. Chen, L. Xie, F-LOAM: Fast LiDAR odometry and
mapping, in: IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020.

[12] D. Rozenberszki, A.L. Majdik, LOL: Lidar-only odometry and localization
in 3D point cloud maps, in: IEEE Int. Conf. Robot. Autom., 2020, pp.
4379–4385.

[13] S. Yang, X. Zhu, X. Nian, L. Feng, X. Qu, T. Ma, A robust pose graph approach
for city scale LiDAR mapping, in: IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2018, pp. 1175–1182.

[14] M. Demir, K. Fujimura, Robust localization with low-mounted multiple
LiDARs in urban environments, in: IEEE Intell. Transp. Syst., 2019, pp.
3288–3293.

https://doi.org/10.1016/j.robot.2022.104226
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb1
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb1
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb1
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb1
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb1
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb2
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb2
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb2
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb2
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb2
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb3
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb3
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb3
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb4
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb4
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb4
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb5
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb5
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb5
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb6
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb6
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb6
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb6
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb6
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb7
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb7
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb7
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb7
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb7
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb8
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb8
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb8
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb8
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb8
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb9
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb9
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb9
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb9
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb9
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb10
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb10
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb10
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb10
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb10
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb11
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb11
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb11
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb12
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb12
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb12
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb12
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb12
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb13
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb13
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb13
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb13
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb13
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb14
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb14
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb14
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb14
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb14

E. Garcia-Fidalgo, J.P. Company-Corcoles, F. Bonnin-Pascual et al. Robotics and Autonomous Systems 156 (2022) 104226
[15] W. Xu, F. Zhang, FAST-LIO: A fast, robust LiDAR-inertial odometry package
by tightly-coupled iterated Kalman filter, IEEE Robot. Autom. Lett. 6 (2)
(2021) 3317–3324.

[16] C. Le Gentil, T. Vidal-Calleja, S. Huang, IN2LAAMA: Inertial lidar localization
autocalibration and mapping, IEEE Trans. Robot. 37 (1) (2021) 275–290.

[17] G. Klein, D. Murray, Parallel tracking and mapping for small AR workspaces,
in: IEEE Int. Symp. on Mixed and Augmented Reality, 2007, pp. 225–234.

[18] H. Strasdat, J. Montiel, A.J. Davison, Scale drift-aware large scale monocular
SLAM, Robot.: Sci. Syst. 2 (3) (2010) 7.

[19] H. Strasdat, A.J. Davison, J.M. Montiel, K. Konolige, Double window opti-
misation for constant time visual SLAM, in: IEEE Int. Conf. Comput. Vision,
2011, pp. 2352–2359.

[20] H. Strasdat, J.M. Montiel, A.J. Davison, Visual SLAM: Why filter? Image Vis.
Comput. 30 (2) (2012) 65–77.

[21] R. Mur-Artal, J.M.M. Montiel, J.D. Tardos, ORB-SLAM: A versatile and
accurate monocular SLAM system, IEEE Trans. Robot. 31 (5) (2015)
1147–1163.

[22] R. Mur-Artal, J.D. Tardos, ORB-SLAM2: An open-source SLAM system for
monocular, stereo, and RGB-D cameras, IEEE Trans. Robot. 33 (5) (2017)
1255–1262.

[23] C. Campos, R. Elvira, J.J. Gomez, J.M.M. Montiel, J.D. Tardos, ORB-SLAM3:
An accurate open-source library for visual, visual-inertial and multi-map
SLAM, IEEE Trans. Robot. 37 (6) (2021) 1874–1890.

[24] R.A. Newcombe, S.J. Lovegrove, A.J. Davison, DTAM: Dense tracking and
mapping in real-time, in: IEEE Int. Conf. Comput. Vision, 2011, pp.
2320–2327.

[25] R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A.J. Davison,
P. Kohi, J. Shotton, S. Hodges, A. Fitzgibbon, KinectFusion: Real-time
dense surface mapping and tracking, in: IEEE Int. Symp. on Mixed and
Augmented Reality, 2011, pp. 127–136.

[26] F. Steinbrücker, J. Sturm, D. Cremers, Real-time visual odometry from dense
RGB-D images, in: IEEE Int. Conf. Comput. Vision, 2011, pp. 719–722.

[27] T. Whelan, S. Leutenegger, R.F. Salas-Moreno, B. Glocker, A.J. Davison,
ElasticFusion: Dense SLAM without a pose graph, in: Robot.: Sci. Syst.,
2015.

[28] O. Kähler, V.A. Prisacariu, D.W. Murray, Real-time large-scale dense 3D
reconstruction with loop closure, in: Eur. Conf. Comput. Vision, 2016, pp.
500–516.

[29] J. Zhang, S. Singh, Visual-lidar odometry and mapping: Low-drift, robust,
and fast, in: IEEE Int. Conf. Robot. Autom., 2015, pp. 2174–2181.

[30] J. Graeter, A. Wilczynski, M. Lauer, LIMO: Lidar-monocular visual odometry,
in: IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 7872–7879.

[31] Y. Seo, C.-C. Chou, A tight coupling of vision-lidar measurements for an
effective odometry, in: IEEE Intell. Veh. Symp., 2019, pp. 1118–1123.

[32] J. Lin, F. Zhang, A fast, complete, point cloud based loop closure for
LiDAR odometry and mapping, 2019, arXiv e-prints: abs/1909.11811. arXiv:
1909.11811.

[33] S. Zhao, H. Zhang, P. Wang, L. Nogueira, S. Scherer, Super odometry: IMU-
centric LiDAR-visual-inertial estimator for challenging environments, in:
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 8729–8736.

[34] H. Wang, C. Wang, L. Xie, Intensity scan context: Coding intensity and
geometry relations for loop closure detection, in: IEEE Int. Conf. Robot.
Autom., 2020, pp. 2095–2101.

[35] S. Agarwal, K. Mierle, et al., Ceres solver, http://ceres-solver.org.
[36] A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? The

KITTI vision benchmark suite, in: IEEE Conf. Comput. Vision Pattern Recog.,
2012, pp. 3354–3361.

[37] L. Li, X. Kong, X. Zhao, W. Li, F. Wen, H. Zhang, Y. Liu, SA-LOAM: Semantic-
aided LiDAR SLAM with loop closure, in: IEEE Int. Conf. Robot. Autom.,
2021, pp. 7627–7634.
11
[38] X. Zheng, J. Zhu, Efficient LiDAR odometry for autonomous driving, 2021,
arXiv e-prints: abs/2104.10879. arXiv:2104.10879.

[39] M. Yokozuka, K. Koide, S. Oishi, A. Banno, LiTAMIN2: Ultra light LiDAR-
based SLAM using geometric approximation applied with KL-divergence,
2021, arXiv e-prints: abs/2103.00784. arXiv:2103.00784. URL https://arxiv.
org/abs/2103.00784.

[40] F. Bonnin-Pascual, E. Garcia-Fidalgo, J.P. Company-Corcoles, A. Ortiz, MUS-
SOL: A micro-uas to survey ship cargo holds, Remote Sens. 13 (3419)
(2021).

Emilio Garcia-Fidalgo is a postdoctoral researcher at
the Department of Mathematics and Computer Sci-
ence, University of the Balearic Islands (UIB). He holds
B.Sc., M.Sc. and Ph.D. degrees in Computer Science.
His current research interests include localization and
mapping, visual place recognition, computer vision,
machine learning and unmanned aerial vehicles (UAVs).

Joan Pep Company-Corcoles is currently pursuing a
Ph.D. degree at the University of the Balearic Islands
(UIB). He received the B.Sc. and the M.Sc. degree
from the Polytechnic University of Catalonia (UPC).
His current research interests include Simultaneous
Localization And Mapping (SLAM), place recognition,
computer vision and unmanned aerial vehicles (UAVs).

Francisco Bonnin-Pascual is a post-doctoral researcher
and teaching assistant at the Department of Math-
ematics and Computer Science of the University of
the Balearic Islands (UIB). He holds B.Sc., M.Sc. and
Ph.D. degrees in Computer Science. His current re-
search interests include motion estimation and control
architectures for aerial robots, and computer vision
and machine learning techniques applied to visual
inspection.

Alberto Ortiz is Full Professor at the Department of
Mathematics and Computer Science of the University
of the Balearic Islands (UIB). He holds B.Sc. and Ph.D.
degrees in Computer Engineering. He is author and
co-author of more than 170 publications related with
computer vision, machine learning and mobile robotics.
His current research interests are machine learning
(deep and shallow) and its applications, motion es-
timation, localization and mapping, visual guidance
of mobile robots, including obstacle detection and
avoidance, and control architectures for mobile robots.

http://refhub.elsevier.com/S0921-8890(22)00132-4/sb15
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb15
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb15
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb15
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb15
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb16
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb16
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb16
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb17
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb17
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb17
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb18
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb18
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb18
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb19
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb19
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb19
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb19
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb19
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb20
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb20
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb20
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb21
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb21
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb21
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb21
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb21
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb22
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb22
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb22
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb22
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb22
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb23
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb23
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb23
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb23
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb23
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb24
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb24
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb24
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb24
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb24
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb25
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb25
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb25
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb25
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb25
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb25
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb25
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb26
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb26
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb26
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb27
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb27
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb27
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb27
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb27
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb28
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb28
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb28
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb28
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb28
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb29
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb29
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb29
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb30
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb30
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb30
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb31
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb31
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb31
http://arxiv.org/abs/1909.11811
http://arxiv.org/abs/1909.11811
http://arxiv.org/abs/1909.11811
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb33
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb33
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb33
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb33
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb33
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb34
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb34
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb34
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb34
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb34
http://ceres-solver.org
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb36
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb36
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb36
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb36
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb36
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb37
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb37
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb37
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb37
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb37
http://arxiv.org/abs/2104.10879
http://arxiv.org/abs/2103.00784
https://arxiv.org/abs/2103.00784
https://arxiv.org/abs/2103.00784
https://arxiv.org/abs/2103.00784
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb40
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb40
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb40
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb40
http://refhub.elsevier.com/S0921-8890(22)00132-4/sb40

	LiODOM: Adaptive local mapping for robust LiDAR-only odometry
	Introduction
	Related work
	LiDAR-based solutions
	Vision-based solutions
	Map indexing

	System overview
	LiDAR odometry
	Feature extraction
	Pose optimization

	LiDAR mapping
	Map representation
	Map updates
	Adaptive local map computation

	Experimental results
	Methodology
	Algorithm configuration
	Odometry performance
	Mapping performance
	Experiments on-board an aerial platform

	Conclusions and future work
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References

