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iBoW-LCD: An Appearance-based Loop Closure Detection

Approach using Incremental Bags of Binary Words*

Emilio Garcia-Fidalgo and Alberto Ortiz

Abstract—In this paper, we introduce iBoW-LCD, a novel
appearance-based loop closure detection method. The presented
approach makes use of an incremental Bag-of-Words (BoW)
scheme based on binary descriptors to retrieve previously seen
similar images, avoiding any vocabulary training stage usually
required by classic BoW models. In addition, to detect loop
closures, iBoW-LCD builds on the concept of dynamic islands,
a simple but effective mechanism to group similar images
close in time, which reduces the computational times typically
associated to Bayesian frameworks. Our approach is validated
using several indoor and outdoor public datasets, taken under
different environmental conditions, achieving a high accuracy
and outperforming other state-of-the-art solutions.

I. INTRODUCTION

One of the most important aspects of Simultaneous Lo-

calization and Mapping (SLAM) [1] is to correctly manage

the perceived information from the environment. Irrespective

of the kind of sensor involved, there always intervene un-

avoidable noise sources that produce inaccurate measurements,

leading to inconsistent representations when only raw sensor

data is considered. For this reason, SLAM algorithms usually

rely on loop closure detection mechanisms, which entail the

correct identification of previously visited places. A robust

loop closure detection scheme leads to additional constraints

for the map generation process, resulting into more consistent

representations. Although a variety of sensors have been used

for loop closure detection, in the last decades, a high number

of visual solutions have emerged, specially motivated by the

low cost of cameras, the increase in computing power and the

richness of the sensor data provided. Using a camera as the

main source of information to undertake the association prob-

lem is generically known as appearance-based loop closure

detection [2]–[9].

The performance of an appearance-based loop closure de-

tection algorithm is highly influenced by the method used to

describe the input images and the ability to retrieve previous

images similar to the current one. Regarding image descrip-

tion, recent binary descriptors, such as BRIEF [10], ORB [11],

LDB [12] or AKAZE [13], are progressively replacing the

classical real-valued descriptors like SIFT [14] or SURF [15],

given their reduced storage needs and computational times. As

for the next issue, image indexing, the Bag of Words (BoW)

model [16], [17] has proven to be an effective solution, spe-

cially when used in combination with an inverted index. In this

model, the set of detected local features is quantized according
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to a set of representative features called visual words, which

conform a visual vocabulary, from which a histogram of visual

word occurrences can be derived as the image descriptor. This

visual vocabulary is typically generated off line. As a main

limitation, these approaches need a training phase, which,

depending on the number of descriptors (required to be high

for an adequate performance) and the clustering technique

used, can take a long time. Furthermore, this visual vocabulary

is intended to be useful for generic scenarios, perhaps with

a different appearance with regard to the training set, what

can lead to additional false detections [18]. In these cases,

the vocabulary can be regenerated using images taken from

the current environment, at the expense of a priori knowledge

and more computation time. An alternative to cope with these

issues is to build the dictionary in an incremental manner.

This paper proposes a novel and effective method for vi-

sual loop closure detection oriented to view/place recognition

called iBoW-LCD (Incremental Bag-of-Words Loop Closure

Detection). Our approach adopts an incremental Bag of Binary

Words strategy, which is able to build a visual vocabulary in an

on-line manner, avoiding the drawbacks of off-line approaches.

This scheme, used in combination with an inverted index, is

employed to efficiently retrieve previously seen images. A ro-

bust loop closure detection method is proposed next. It extends

and enhances the concept of island [5] in order to avoid images

taken from the same place to compete among them as loop

closure candidates. iBoW-LCD is validated using different

public indoor and outdoor datasets and compares favourably

against several state-of-the-art solutions, outperforming them

in several ways.

Regarding the BoW strategy, our previous works [6], [19]–

[21] adopted a purely incremental approach, where the visual

words were never forgotten (removed) but increased in number

as new images were processed. In this work, we consider not

only adding but also deleting words as they are not deemed

useful by an optimized version of the incremental BoW

approach. This results in similar performance (as shown by

the experimental results) with significantly less visual words.

Regarding loop closure, our previous works were mainly

based on Bayes filtering, which usually exhibits increasing

processing times as more images are considered by the filter.

In this work, we replace that filter by a simpler but effective

mechanism to visually close loops on the basis of the novel

concept of dynamic island, obtaining similar performance but

reducing processing times. Unlike in [6], the method presented

in this paper is not based on the FLANN implementation of the

Muja’s algorithm [22] and it has been developed from scratch.

The rest of the paper is organized as follows: Section II

overviews most important works in the field; Section III

introduces the new incremental Bag of Binary Words scheme;

http://arxiv.org/abs/1802.05909v2


Section IV presents the loop closure detection approach; Sec-

tion V reports on the results obtained; and, finally, Section VI

concludes the paper and discusses topics for future research.

II. RELATED WORK

Most appearance-based loop closure detection solutions

developed during the last years can be mainly classified ac-

cording to the method used to describe the input images [23].

In this respect, some authors have opted for using a holistic

approach to compute a global descriptor of the image. This

kind of descriptors are usually fast to compute, but less tolerant

to illumination and view-point changes, what reduces their

discriminative capabilities. In order to alleviate this effect,

loop closure techniques based on global descriptors tend to

match sequences instead of single images [24]–[26]. This has

been proven to be more robust against appearance changes,

but renouncing to other desirable properties to detect loops,

such as rotation invariance.

In this line, CNN-based solutions [27]–[30] have recently

emerged as effective against environmental changes. As a

pioneering work, Sünderhauf et al. [27] evaluated the utility

of ConvNets for place recognition. In [28], they combined an

object proposal technique with CNN features to match places

over extreme appearance changes. Arroyo et al. [29] proposed

a method where they fused the information from different

convolutional layers to perform topological localization. In

a recent work, Arandjelovic et al. [30] introduced a CNN

architecture mainly based on a layer inspired in the VLAD

image representation for weakly supervised place recognition.

Despite the good performance shown by this kind of solutions,

they are still disconnected from real SLAM and loop closure

detection problems, as stated in [9].

The BoW model [16], [17] is, by far, the most used

technique for appearance-based loop closure, given its demon-

strated efficiency for retrieving previous similar images. So-

lutions based on this scheme can be mainly classified as off-

line and on-line, depending on the nature of the vocabulary

building process. Key works that fall into the off-line category

are the FAB-MAP algorithm [2] and its extension FAB-MAP

2.0 [3], where a Chow-Liu tree was used to approximate the

probabilities of visual word co-occurrences. Gálvez-López and

Tardós [5] trained a visual vocabulary based on BRIEF [10],

promoting the use of binary descriptors for place recognition

tasks. Using this vocabulary as a basis, they introduced a

loop closure detection method based on the concept of islands

to group similar images close in time. The authors prevent

images with a similar appearance to compete among them

as loop closure candidates splitting the image sequence into

fixed-size intervals. The algorithm establishes a relationship

between the query image and each island according to a global

score, computed as the sum of the individual scores of each

image belonging to the island. In this work, we extend this

idea by adapting the generation of the islands to the operating

environment, allowing islands of different and dynamic sizes,

as will be shown later. Mur-Artal and Tardós [31] enhanced

their original algorithm [5] by using ORB [11], more robust

against scale and rotation changes. A more recent work [9]

proposes an extension of the BoW model that groups visual

words with similar optical flow when observed along two

consecutive frames. These groups are called Structure-Aware

and Viewpoint-Invariant High-Order Visual-Words (SVHVs).

They naturally include the environment structure into the

image description. All the methods surveyed so far require

a training stage. In this work, we want to address the problem

from a different point of view, by building the dictionary in

an on-line manner.

Several on-line BoW attempts can be found in the litera-

ture [4], [6]–[8], [18], [32]. Among them, the work by Angeli

et al. [4], which proposes a loop closure method based on

an incremental BoW scheme [33] and a Bayesian filtering

framework, can be considered of high importance in the

field. Other on-line approaches involve RTAB-Map [32] and

OVV [18], although these approaches are based on real-valued

descriptors. Recently, an incremental BoW scheme based on

binary descriptors called IBuILD [7] was introduced. This

work describes a method to construct a visual dictionary in

an on-line manner, aiming at loop closure detection. However,

as stated by the authors, their approach does not employ an

indexing scheme for an efficient search of words, which affects

the scalability of the algorithm. The approach proposed in

our paper features a hierarchical and incremental structure

for such purpose, reducing the complexity during the BoW

assignment process. In a more recent solution, Zhang et al. [8]

proposed a technique for learning a visual word from a pair of

matched features along two consecutive frames. The learned

descriptor has perspective invariance to camera motion. This

technique is finally integrated into the IBuILD algorithm,

which, as mentioned before, lacks of a hierarchical structure

to efficiently search for visual words.

III. INCREMENTAL BOW FOR IMAGE INDEXING

In order to manage an increasing number of visual words,

an efficient indexing scheme is required, since a linear search

becomes infeasible. Normally, this problem is solved using

hierarchical structures such as kd-trees [34] or hierarchical

k-means trees [22], but these methods are not suitable for

binary descriptors because they expect that the descriptor

components can be continuously averaged. Instead, hashing

techniques [35], [36] can be used for matching binary de-

scriptors. In this respect, Muja and Lowe introduced in [37]

a novel method that achieves better performance than hashing

approaches. Furthermore, their method involves a hierarchical

tree which is a perfect structure for adding and deleting de-

scriptors, as it is required in our case. In this work, we extend

this method to be used as an incremental visual dictionary, as

explained in the following sections.

A. Overview of Muja’s Approach

Muja and Lowe introduced an effective hierarchical struc-

ture [37] to index and match binary features, which requires

less storage space and scales better than other hashing meth-

ods. This structure consists in a tree where non-leaf nodes

contain cluster centres and leaf nodes store visual descriptors

to be matched. The visual words of the incremental vocabulary
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Fig. 1. A simple example of a hierarchical tree built by means of the Muja’s
approach [37] to index 10 visual descriptors (d0, . . . , d9) using as parameters
K = 2 and S = 3. Labels in non-leaf nodes (grey circles) indicate the
descriptor selected randomly as the cluster centre during the building process.

are hence stored in the leaf nodes. To build one of these trees,

the algorithm randomly selects, from the initial set of points,

K descriptors as cluster centres. Next, each remaining input

descriptor is assigned to its closest cluster centre according to

their Hamming distance. This process is repeated recursively

until the number of descriptors within a cluster is below

a certain threshold S. The authors also demonstrated that

building several trees Ti and using them in parallel during

the search led to higher performance. An example of a tree

built using this process is shown in Fig. 1.

In order to search descriptors in parallel using several trees,

the algorithm starts with a single traverse of each tree from

the root until reaching a leaf node, selecting at each step the

node closest to the query descriptor and adding the unexplored

nodes to a priority queue. When a leaf node is reached, all the

points within this node are linearly searched. After exploring

each tree once, the search continues from the closest node

stored in the priority queue. The process finishes when a

certain amount of descriptors has been examined (64 in our

experiments).

B. Visual Vocabulary Update

Muja’s scheme was originally devised to index a static

set of descriptors. Given that in our approach we handle an

incremental visual dictionary, several modifications over the

original approach have been introduced. First of all, binary

descriptors are matched and combined during navigation to

update the visual words of the vocabulary by means of a

merging policy. As in our previous works [6], [20], we

make use of a bitwise AND operation, which experimentally

provides us better recognition performance than a bitwise OR.

Formally stated:

Bt
wi

= Bt−1
wi
∧Bq , (1)

where Bt−1
wi

is the binary descriptor associated to the visual

word wi at time t − 1, Bq is a query descriptor and Bt
wi

is

the descriptor associated to the visual word wi after the fusion

of descriptors. In [20], we report on several experiments that

demonstrate that this policy does not end up into degenerated

descriptors (e.g. almost all bits set to zero).

Secondly, descriptors without a match in the index are

incorporated into the dictionary as new visual words. To this

Algorithm 1 Adding a descriptor as a new visual word

Input: T : Hierarchical tree, B: Binary descriptor

1: node← searchDescriptor(T,B)

2: if numDescriptors(node) + 1 < S then

3: appendDescriptorToNode(node, B)

4: else

5: D ← getDescriptors(node)

6: D = D ∪B

7: buildNodeRecursively(node,D)

Algorithm 2 Deleting a visual word

Input: T : Hierarchical tree, B: Binary descriptor

1: node← getNodeOfDescriptor(T,B)

2: deleteDescriptor(node,B)

3: if numDescriptors(node) > 0 then

4: if B == getClusterCentre(node) then

5: selectNewClusterCentre(node)

6: else

7: noder ← getRootNode(node)

8: deleteChildNode(noder, node)

9: deleteNodesRecursively(noder)

end, each descriptor is searched from the root until reaching

a leaf node. Next, we assess if adding the corresponding new

descriptor to the selected leaf node exceeds the maximum leaf

size S. If that is the case, the node is recursively rebuilt adding

the query descriptor to the original descriptor set. Otherwise,

the descriptor is simply appended to the leaf node. Algorithm 1

illustrates this process.

Third, we maintain an inverted index. It stores, for each

visual word, a list of images where it was found. Initially, the

visual dictionary is created with the binary descriptors of the

first image as a set of visual words. When an input image

is processed, its extracted descriptors are matched against the

visual words of the index applying the ratio test [14]. Matched

descriptors are merged with their corresponding visual words

using Eq. 1. Unmatched descriptors are added as temporary vi-

sual words to the vocabulary. In order to reduce the complexity

of the index, these temporal visual words survive only if, after

several consecutive frames Pf , they have been observed (e.g.

matched) at least a certain number of times Po. The inverted

index is updated accordingly. The main purpose of this policy

is to determine visual words that are most likely to be observed

again if the agent returns to a previous location.

Lastly, we have provided the vocabulary with a mechanism

to delete visual words to support the update policy outlined

above. After deleting a descriptor from the dictionary, the node

where it was appended and its ancestors are recursively revised

to assess if they still contain children nodes. A node without

any children node is no longer required, and therefore, deleted.

If the deleted descriptor coincides with the cluster centre, a

new centre is randomly selected. The process is summarized

in Alg. 2.

C. Retrieval of Similar Images

The approach introduced in this section is used to efficiently

retrieve previous images which are similar to the current



image. The inverted index allows us to efficiently compare

a query image only with those images that share some visual

words with it. A similarity score s(It, Ik) is initialized to 0

for all possible k previously seen frames. Being zt the set

of binary descriptors extracted from the current image It,

we search each descriptor of zt in the dictionary to find the

closest visual word. Next, we obtain, from the inverted index,

the list of images where this visual word has appeared, and

add a weight to the score s corresponding to each of the

retrieved images. This weight is related to the term frequency -

inverse document frequency (tf-idf [16], [20]) scoring, which

reflects the importance of a visual word with regard to the

visual vocabulary and the current image. After processing all

descriptors in zt, the ordered list of scores s is returned as

the images most similar to It. The source code of this image

indexing method is available to the community1 as OBIndex2

(Online Binary Index 2).

IV. LOOP CLOSURE DETECTION

This section details iBoW-LCD, a novel loop closure de-

tection approach which makes use of the aforementioned

OBIndex2. The source code is also available on line2.

A. Searching for Previous Images

Given an image It at time stamp t, the process starts

querying the image index, as explained in Sec. III-C. A

buffer is used to store the most recent p images, and hence

delay their publication as loop closure candidates. As a result

of the search, the list of the j most similar images Ct =
{Is1 , . . . , Isj}, ordered by their associated scores s(It, Ik), is

obtained. The range of these scores highly depends on the

distribution of the visual words and varies between even con-

secutive and similar images. Therefore, they are normalized,

using a min-max technique, as follows:

s̃(It, Ik) =
s(It, Ik)− s(It, Is1)

s(It, Isj )− s(It, Is1)
, (2)

where s(It, Is1) and s(It, Isj ) are, respectively, the minimum

and maximum scores obtained from the image search. This

normalization step maps the scores to the range [0, 1]. Next,

we discard those images whose normalized score s̃ is below

a predefined threshold τim, generating the final ordered list of

image matches C̃t ⊆ Ct. Note that this threshold determines

the number of candidates. Setting τim to a low value results

quite convenient since, in this way, there are still enough

candidates but the worst choices can be discarded.

B. Dynamic Islands Computation

In previous works [6], [20], we relied on discrete Bayes

filters to detect loop closures. As it is well known, these

techniques lead to increasing computational times as more

images are processed, specially due to the cost of calculating

the transition model. To overcome this problem, iBoW-LCD

introduces the concept of dynamic island, as an extension

1http://github.com/emiliofidalgo/obindex2
2http://github.com/emiliofidalgo/ibow-lcd

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

Υ
0

3 Υ
4

6 Υ
8

11

Fig. 2. A simple example comprising 3 islands (Υ0

3
, Υ4

6
, Υ8

11
) of different

sizes, resulting from a sequence of 12 images (I0, . . . , I11). Note that I7
does not belong to any island. Grey circles denote the island’s representative,
which is the image with the highest score s̃ and hence the island’s origin.

of the idea of island [5] that locally adapts the size of the

group of images. The innovation against the original concept

of island is twofold: on the one hand, iBoW-LCD does not

compute islands using all the previous images but makes use of

a filtered set of similar images C̃t resulting from the previous

step; on the other hand, the size of the islands is not fixed but

depends on the similarities between neighbouring images and

the camera velocity, what adapts the resulting islands to the

image stream.

In this work, an island is defined as a group of similar

images whose timestamps lie between two different instants.

This criterion allows us to group images close in time and

avoid them from competing to each other as loop candidates.

We denote Υm
n as the island which groups the images whose

timestamps are between m and n. Additionally, there always

exists a representative image for each island, which corre-

sponds to the image with the largest score s̃ within the range

[m,n]. To manage the set of islands, images in the list C̃t are

considered sequentially: for each image Ic ∈ C̃t, we assess

if its timestamp lies within the time interval of an existing

island Υm
n ; if this is the case, the image is associated to Υm

n

and the time interval of Υm
n is updated to accommodate Ic

and the b previous and posterior frames; otherwise, an island

is created, with a predefined initial size 2b+1 around time c,

and Ic is associated to the new island. After processing all the

images in C̃t, the limits of the resulting islands are revised and

truncated, if needed, in order to obtain a disjoint set, avoiding

time overlaps among islands. Figure 2 illustrates the concept

through a simple example. For each island, a global score G

is computed as:

G(Υm
n ) =

n∑

i=m

s̃(It, Ii)

m− n+ 1
, (3)

which is the average of normalized scores of the images

associated to the island. Finally, the resulting list of islands Γt

is sorted according to their global score G. The full process

of building islands is summarized in Alg. 3.

C. Island Selection

At this step, iBoW-LCD selects the best matching island

Υ∗(t) ∈ Γt. To this end, it recalls the best island at the

previous timestamp t−1, Υ∗(t−1), and checks whether any of

the islands Υm
n ∈ Γt overlaps with Υ∗(t−1). The overlapping

islands are named priority islands inspired by the observation

that consecutive images should close loops with areas of the

environment where previous images closed a loop, if any. If

priority islands are found, the one with the highest global score

G is selected for the next step. Otherwise, iBoW-LCD chooses



Algorithm 3 Building dynamic islands

Input: C̃: Ordered list of similar images

Output: Γt: Ordered list of islands at time t.

1: Γt ← []
2: for each image Ic in C̃ do

3: found ← false

4: for each island Υm
n in Γt do

5: if m < c < n and not found then

6: associateToIsland(Ic,Υ
m
n )

7: changeIslandSize(Υm
n , c, b)

8: found ← true

9: if not found then

10: Υc−b
c+b ← createNewIsland(Ic, b)

11: Γt = Γt ∪Υc−b
c+b

12: Γt ← obtainDisjointIslands(Γt)

13: for each island Υm
n in Γt do

14: G(Υm
n )← computeIslandScore(Υm

n )

15: sort(Γt)

the first island from the current set Γt, i.e. the one with the

largest score G, which turns out to be the island most similar

to the current image.

D. Loop Closure Decision

This stage of iBoW-LCD chooses first the representative of

the selected island as the final loop closure candidate If . An

epipolarity analysis is performed next for It and If to validate

whether they can come from the same scene after a camera

rotation and/or translation. To this end, we compute a set of

putative matchings between It and If using the ratio test [14]

and find, using RANSAC, the inliers resulting from imposing

the fundamental matrix model to the set of feature matchings.

The loop hypothesis is accepted only if the number of inliers

is high enough.

Note that, instead of this geometrical check, a temporal

coherency technique could be applied here, like in [5], [7],

to reduce the computational requirements of the approach.

However, this last method tends to reduce the recall values.

This option could be considered when using iBoW-LCD in

a real SLAM system, where achieving high recall values are

not essential and several correct loops are enough to ensure

coherent maps.

iBoW-LCD also tracks the number of consecutive loops

occurred at time t in order to avoid the computation of

the fundamental matrix on every image and speed up the

process: the algorithm accepts a loop, without performing

the epipolarity analysis, if a priority island is found and

the number of consecutive loops at time t is higher than a

threshold τc.

V. EXPERIMENTAL RESULTS

This section evaluates the proposed approach and compares

it against several state-of-the-art solutions. An Intel Core i7-

6500U (2.5Ghz) / 12 GB RAM computer was used in all

experiments. OBIndex2 made use of four cores to perform

a search in four trees at the same time, while iBoW-LCD

employed only a single core.

TABLE I
PARAMETERS VALUES AND SECTION WHERE THEY ARE DEFINED.

K (Sec. III-A) 16 Pf (Sec. III-B) 2

S (Sec. III-A) 150 Po (Sec. III-B) 2

Ti (Sec. III-A) 4 τim (Sec. IV-A) 0.3

p (Sec. IV-A) 50 b (Sec. IV-B) 5

Features per image 1000 τc (Sec. IV-D) 20

A. Methodology

As usual in these cases, the evaluation is performed in

terms of precision-recall metrics. Along with the curves, we

are particularly interested in the maximum recall that can be

achieved at 100% precision, what implies no false positive

detections missing a minimum number of loops. Avoiding

these false positives becomes essential when the algorithm

is employed in a full SLAM system, given that they can

produce inconsistencies in the resulting maps. The following

public datasets, taken under different visual conditions, have

been considered for the evaluation: City Centre [2] (CC), New

College [2] (NC), Lip6 Indoor [4] (L6I), Lip6 Outdoor [4]

(L6O), KITTI 00 [38] (K00) and KITTI 06 [38] (K06). For

benchmarking purposes, we use the ground truth provided by

the original authors of each method except for the KITTI

sequences, where the files provided by [26] are employed as

a reference. This last ground truth was created manually by

the authors, labelling as long stops the time intervals where

the vehicle was not in motion.

B. Algorithm Configuration

In order to find a suitable set of parameters for iBoW-

LCD, we initially executed the algorithm against the City

Centre dataset several times, modifying the parameters until

obtaining the best possible recall at 100% precision. The

resulting parameters, which are enumerated in Table I, have

then been used for the remaining experiments. Furthermore, a

collection of ORB interest points [11] have been detected and

described for each image. Note, however, that our algorithm is

descriptor-agnostic and that any other binary descriptor could

be used instead.

C. General Performance

As a measure of general performance of iBoW-LCD, we

have computed for all datasets including CC the precision-

recall curves shown in Fig. 3, resulting from modifying the

threshold on the number of inliers required to accept a loop

(Sec. IV-D). As can be seen, iBoW-LCD works reasonably

well in all cases, achieving high recall rates while keeping

precision at 100%. From the curves, it can be observed

that the approach exhibits a very stable behaviour especially

for the L6O and K06 datasets, where precision decreases

minimally as recall values increase. This behaviour repeats for

all datasets, even under viewpoint and illumination changes.

We hypothesize that deleting unstable descriptors, as done by

iBoW-LCD, favours keeping more stable visual words in the

dictionary, improving the general system tolerance as for the

aforementioned appearance changes.
Next, we chose the largest dataset considered in this work

(K00) to analyse the evolution of the visual dictionary size
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Fig. 4. Performance metrics computed over the K00 dataset. (left) Vocabulary
size with regard to the number of images processed. (right) Average response
time per image with regard to the number of images processed. Peaks are
mainly due to the rearrangement of the visual words.

and the corresponding average response time per image, which

includes all the stages of the algorithm (visual word handling,

image query, islands computation and loop closure decision).

The results obtained can be found in Fig. 4. In spite of

the fact that the number of visual words grows as more

images are processed, the average response time remains

more stable, exhibiting a moderate increment. Note that this

growth is highly related to the trajectory performed by the

vehicle: the more similar areas are revisited, the less new

visual words are added, since more visual words are matched

against the visual dictionary. On average, the time required

to process a frame of the K00 dataset is 432.38 ms. Times

could be slightly higher than the ones presented by some off-

line solutions, especially due to the delay required to manage

visual words. To alleviate this, several improvements could

be incorporated, such as reducing the number of features per

image or applying a temporal consistency check instead of

performing an epipolarity analysis. In this work, we have

prioritized high recall values against computational times.

D. Comparison with Other Solutions

This section compares iBoW-LCD against other state-of-

the-art solutions. First of all, given that the proposed approach

is an evolution of one of our previous works [6], we want to

check whether the modifications proposed here represent a

real improvement in terms of response time and recall. In this

regard, Table II summarizes the final vocabulary size (VS),

the maximum recall at 100% of precision (R) and the average

response time per image (T) obtained for each approach and

dataset. As can be observed, the impact in terms of recall is

minimum and, in general, quite similar. However, iBoW-LCD

is able to process an image in less time using a more reduced

set of visual words in contrast to our previous solution. We

believe that this fact is mainly due to the new visual word

managing process and the simplification of the loop closure

TABLE II
COMPARISON WITH OUR PREVIOUS APPROACH.

Previous [6] iBoW-LCD
VS R (%) T (ms) VS R (%) T (ms)

CC 1.6M 88.24 503.65 95K 88.25 368.41

NC 1.3M 53.15 489.24 98K 79.40 352.08

L6I 30K 79.09 24.93 4K 83.18 19.17

L6O 826K 97.51 304.01 121K 85.24 249.45

K00 4.7M 78.73 546.21 958K 76.50 432.38

K06 1.1M 84.76 480.49 212K 95.53 395.16

TABLE III
COMPARISON OF MAXIMUM RECALL AT 100% PRECISION.

CC NC L6I L6O K00 K06

Cummins [3] 38.50 51.91 n.a. n.a. 49.21 55.34

Angeli [4] n.a. n.a. 36.86 23.59 n.a. n.a.

Milford [24] 68.98 49.39 n.a. n.a. 67.04 64.68

Khan [7] 38.92 n.a. n.a. n.a. n.a. n.a.

Gálvez-López [5] 30.61 55.92 n.a. n.a. n.a. n.a.

Mur-Artal [31] 43.03 70.29 n.a. n.a. n.a. n.a.

Bampis [9] 52.36 74.60 42.32 49.55 n.a. n.a.

Zhang [8] 41.18 59.20 n.a. n.a. n.a. n.a.

Stumm [39] 38.00 39.00 n.a. n.a. n.a. n.a.

Cieslewski [40] n.a. n.a. n.a. n.a. ≈60.00 n.a.

iBow-LCD 88.25 79.40 83.18 85.24 76.50 95.53

scheme. Notice the high reduction of the final vocabulary size

in comparison with our previous approach. The variability

in the obtained recall values can be attributed to the high

dependence of the method on the distribution of the visual

words. As shown in Table II, deleting visual words does

not always imply higher recall values, but always reduces

computational times and the size of the final visual vocabulary.

Table III compares the maximum recall achieved by our

approach at 100% precision in contrast to other state-of-the-

art solutions. The results reported are taken from the original

papers, except the ones corresponding to Cummins [3] and

Milford [24] which were obtained by ourselves in a previous

work [20]. The term n.a. means that the corresponding in-

formation is not available from any source. From this table,

one can observe that the increase in processing times is

compensated in terms of accuracy, since iBoW-LCD achieves

a higher recall in all datasets considered. This enhancement is

specially evident in the CC dataset, where it is usually difficult

to attain high recall at 100% of precision.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have introduced iBoW-LCD, an

appearance-based loop closure detection algorithm, which

mainly relies on an incremental Bag of Binary Words scheme

to retrieve previous similar images. This incremental visual

dictionary builds on a hierarchical structure to efficiently

search, insert and delete new visual words on line, avoiding

the main drawbacks that off-line approaches present. Next,

iBoW-LCD makes use of a novel concept to group similar

images close in time called dynamic island, which naturally

exploits the nature of image sequences to detect loop closures.

The proposed method has been validated using several public

datasets, obtaining competitive results in comparison with

other state-of-the-art solutions.



Referring to future work, we will consider to extend the

methods developed in this paper to a hierarchical loop closure

scheme, given the good results obtained in this matter in

one of our previous publications [20]. We will investigate

other appearance-based methods to group images. To further

favour the long-term operation of the method, a mechanism to

mitigate the growth of the dictionary (e.g. based on response

time) could be useful. Additionally, we also plan to enhance

the response time of iBoW-LCD parallelizing some of their

stages. Finally, we want to incorporate our solution into a

complete SLAM / 3D reconstruction framework.
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