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I. INTRODUCTION

In the last decades, robots have been used to explore
areas hard to reach for humans. Underwater environments
fall into this category, since their operating conditions make
even simpler operations risky to be carried out by divers,
especially when they have to be performed at high depth.
A possible approach to overcome this problem is to use
a Remotely Operated Vehicle (ROV), although this easily
becomes a difficult and expensive solution because it usually
requires a sophisticated support infrastructure and specialized
staff. In this regard, the project MERBOTS proposes a new
robot-based methodology to make intervention tasks safer,
simpler and at a lower cost. The proposed system involves
two vehicles, being one of them a Hybrid ROV (H-ROV)
equipped with an arm and a manipulator, as well as the
necessary perception devices, which altogether implement the
supervised intervention task, while the other is an Autonomous
Underwater Vehicle (AUV) endowed with cameras to provide
alternative points of view of the target for the operator in
charge of the H-ROV, enabling thus a more robust and reliable
operation. In this paper, we focus on the target detection and
tracking tasks to be performed to provide this secondary view,
which are part of the goals addressed by the SUPERION
subproject.

To this end, the object to manipulate must be ensured
to appear continuously in the field of view of the camera
placed in the AUV. This naturally leads to the implemen-
tation of a visual servoing task, whose input is the image
stream coming from the AUV camera and its outputs are
the velocity commands to be sent to the vehicle controller
so as to keep the target in the field of view at all times.
Due to its well-known robustness and simpler implementation,
in this application, we choose an Image-Based Visual Servo-

Fig. 1. Outline of the visual control approach. The DAT module is in charge
of detecting the target in the current image. The detected position is then used
by the IBVS module to generate the AUV control commands.

control (IBVS) approach [1]. From a global point of view, the
solution comprises two interacting processes, target detection
and tracking, which provide input to the visual servo control
strategy. The following sections describe briefly all three
aspects of our solution: target detection, target tracking and
visual servo-control.

II. VISUAL CONTROL APPROACH

Figure 1 outlines our approach. As can be seen, the system
comprises a module to detect and track the object in the image
(DAT) and a module to generate the corresponding control
velocities for the vehicle (IBVS). Initially, the target is selected
in the current image by defining a Region of Interest (ROI).
The DAT module computes then a set of SIFT keypoints [2]
as the target model. This model is used to search and track the
target in the image stream. The coordinates of the ROI where
the target has been found are accordingly updated and sent
to the IBVS module, which generates the necessary control
commands that are to make the target get centred in the image.
Both modules, DAT and IBVS, are detailed next.

A. Target Detection and Tracking

As shown in Fig. 2, our strategy to estimate the position
of the target in the image plane is based on two different
stages, detection and tracking, which interact with one another.
The detection stage is computationally expensive but robust to
appearance changes. Conversely, the tracking stage is a more
efficient process, but tends to lose the target from time to time.
Taking into account these considerations, our strategy employs
the tracking stage as much as possible and the detection
stage is only used when the tracking system needs to be
retrained. The system starts executing the detection stage of
the DAT module. If the target is found in the current image,
the corresponding bounding box is set as the ROI and used to
initialize the tracking process. This stage keeps estimating the
position of the target until it considers that it has lost track
of it. In such a case, the detection process activates again and
operates until the target is relocated.

The detection stage begins computing a set of SIFT key-
points in the current image. A collection of putative matches
are found between the current image SIFT features and the
target model, also consisting of a set of SIFT features. For



Fig. 2. Target detection and tracking. As can be seen, the strategy is based on the interaction between the detection and tracking stages. ST (status) flags the
current operation mode.

efficiency reasons, this task is implemented using a set of
randomized kd-trees and applying the nearest neighbour dis-
tance ratio test [2] to discard incorrect matches. The surviving
matches are then employed to compute a homography between
both descriptors. After that, if the resulting number of inliers
is high enough, we consider that the target has been found and
the resulting homography is used to estimate the coordinates of
the target ROI corners in the current image. The minimal up-
right bounding box is calculated using these coordinates, and
the corresponding corners used as input to the IBVS module.

For the tracking process, we have considered two well-
known visual tracking algorithms, Struck [3] and KCF [4],
which have correspondingly been adapted to our purposes, so
that the system can make use of any of them. Nonetheless,
we have empirically noted that KCF performs better in com-
putational terms. In any case, during tracking, we compute the
distance between global PHOG descriptors [5] for the target
and the current ROI to determine whether the target has been
lost. The detection stage becomes active again if this distance
is higher than a threshold.

B. Image-Based Visual Servoing

IBVS control operates in terms of image positions. In one
of the many possible approaches, the goal is to make a set
of image points (features) s attain a set of desired positions
s∗, which implicitly moves the involved platform. To this end,
IBVS defines a model that relates the camera velocities ξc(t)
to the velocities of the selected features over the image plane
ṡ(t) = [ṡ1,x(t), ṡ1,y(t), . . . , ṡn,x(t), ṡn,y(t)]

T through the so-
called interaction matrix L [6]. In our case, we conveniently
include the transformation from robot to camera cTr, to obtain
velocity commands in the robot frame (ξr):

ṡ(t) = Lξc(t) = L (cTr ξr(t)) = L′ ξr(t) (1)

Robot motion needed to move the image features to the desired
image positions is then derived from (1) in the form of (2):

ξr = (L′)+ ṡ(t) (2)

where (L′)+ is the pseudoinverse of L′ resulting from a least
squares framework. For our application, the corners of the ROI
detected by the DAT module are used as the features s, while,
to set s∗, those corners are required to get centred in the image.

In general terms, IBVS is designed to make the current fea-
ture positions s(t) coincide with the set of desired positions s∗,

i.e. minimize the corresponding error function e(t) = s(t)−s∗.
In our approach, we adopt a PID-like control scheme to this
end, so that the final control law results to be:

ξr(t) = −(L′)+
(
λp e(t) + λi

∫ t

0

e(τ) dτ + λd
d e(t)

dt

)
(3)

being λp, λi and λd the, respectively, proportional, integral
and derivative gains of the controller. This control scheme
is replicated for each degree of freedom (d.o.f) of the AUV,
adopting an uncoupled control solution, so that different gain
values result for each d.o.f.

As previously said, in this work, we make use of the ROI
corners as image features, which have to be properly tracked
to correctly compute the error function e(t) required by (3).
Additionally, the appearance of the target is updated during
the intervention to improve the performance of the tracking
module; the update takes place whenever the norm of e(t) is
low enough (see Fig. 1).

III. EXPERIMENTAL RESULTS

For validation purposes, a first series of field trials in a
water tank at the Research Center in Underwater Robotics
(CIRS, UdG) and at sea (Sant Feliu de Guı́xols, Girona) have
been recently performed by the MERBOTS consortium. Those
experiments involved the Sparus II platform [8] as the AUV,
fitted with a lateral thruster for sway motion. Videos for these
experiments are available at http:// srv.uib.es/automar17.
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