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Abstract. This paper presents a novel vision-based framework for con-
trolling an Autonomous Underwater Vehicle (AUV). In our application,
this AUV is in charge of providing an alternative point of view of a
predefined target during a multi-robot intervention mission, where two
vehicles cooperate in order to perform the required task. Given this sce-
nario, our framework is based on two main modules: on the one hand, a
target detection and tracking module is used to determine the position
of the target in the scene; on the other hand, a visual servoing module
generates the required velocities for controlling the platform according
to the estimated position of the target in the image plane. Results for a
set of experiments in different environments are reported and discussed.

Keywords: Target detection · Tracking · Visual servoing · Underwater
robotics

1 Introduction

In the last decades, robots have been widely used to explore areas which are usu-
ally hard to reach for humans. Underwater environments fall into this category,
since their operating conditions make even simpler operations risky for human
divers, especially when they have to be performed at high depth. A possible app-
roach to overcome this problem is to use a Remotely Operated Vehicle (ROV),
although this easily becomes a difficult and expensive solution because it usu-
ally requires a sophisticated support infrastructure and specialized staff. In this
regard, the Spanish project MERBOTS proposes a new robot-based method-
ology to make intervention tasks safer, simpler and at a lower cost. The pro-
posed system involves two vehicles, being one of them a Hybrid ROV (H-ROV)
equipped with an arm and a manipulator, as well as the necessary perception
devices, which altogether implement the supervised intervention task, while the
other is an Autonomous Underwater Vehicle (AUV) endowed with cameras to
provide alternative points of view of the target for the operator in charge of
the H-ROV, enabling thus a more robust and reliable operation. In this paper,
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we focus on the task of controlling this AUV to provide these secondary views,
which are part of the goals addressed by the MERBOTS project.

To this end, the object to manipulate must be ensured to appear continuously
in the field of view (FOV) of the camera placed in the AUV. This naturally leads
to the implementation of a visual servoing task, whose input is the image stream
coming from the AUV camera and its outputs are the velocity commands to
be sent to the vehicle controller so as to keep the target in the camera FOV at
all times. Due to its well-known robustness and simpler implementation, in this
application, we choose an Image-Based Visual Servo-control (IBVS) approach [3].
From a global point of view, the solution comprises two interacting processes,
target detection and tracking, which provide input to the visual servo control
strategy. Therefore, the main contribution of this paper is a generic and robust
vision-based strategy for controlling an AUV which we experimentally validate
in a real underwater platform under different operating conditions. The following
sections describe all aspects of our solution: Sect. 2 discusses related work, Sect. 3
details our vision-based framework, Sect. 4 reports on the results of the different
experiments performed and Sect. 5 draws some conclusions and discusses about
future research.

2 Related Work

Undersea has always resulted a challenging environment for vision-based
approaches due to the quality of the optical data which are finally available
from the on-board imaging devices. Briefly speaking, absorption and scattering
phenomena affecting light propagation in the significantly participative under-
water media tend to produce blurred and low-contrasted images, which introduce
additional difficulties into image-based inferring processes. Nonetheless, nowa-
days one can find a number of works reporting successful results for vision-based
solutions operating underwater, some times taking into account those difficul-
ties [13,23], while other approaches manage them minimizing the aforementioned
optical effects, e.g. because image capture takes place at close distance to the
scene, or by means of robust vision techniques [14,20]. In order to cope with
real-time restrictions, our solution belongs to the second category, so no special
steps are taken in order to enhance the images, but we deal with them through
a robust software solution.

In any case, leaving the aforementioned difficulties aside and focusing on the
use of vision for platform control, nowadays, given the computational capabili-
ties of current state-of-the-art processors, vision has become a good choice for
platform control because they are able to provide high resolution data with high
speed acquisition at low cost. Moreover, vision-based control becomes specially
useful in underwater intervention applications, where the robot usually needs
to hover over the mission area [19,24]. Within this context, the FP7 project
TRIDENT [24] proposed a new methodology elaborated around the concept
of an Intervention Autonomous Underwater Vehicle (I-AUV), comprising two
main elements: the vehicle itself, which, for the case of the TRIDENT project,
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consisted in the Girona-500 platform [22], and a dexterous hand-arm system
attached to the robot. In order to determine the position of the object to manip-
ulate, a pure feature-based detection technique was employed, i.e. the object
of interest was located by means of a descriptor based on a constellation of
image features stemming from its appearance underwater, and this process was
repeated frame after frame, without taking into account the inherent temporal
correlation between frames. A similar concept was employed during the Span-
ish project TRITON [19], which focused on improving the maintenance of sub-
merged observatories through the use of robots instead of human divers. Our
current solution adopts a tracking-based approach which takes into account the
above-mentioned temporal correlation to reduce false positive detections of the
target as well as to lower the computational times.

Several other works on visual control for underwater environments can be
found in the literature: e.g. Lots et al. [15] make use of an IBVS approach in
combination with a proportional-integral-derivative (PID) controller for solving a
station-keeping problem, while Sattar et al. [25] proposes a system for controlling
the underwater legged robotic system AQUA, using an object detection method
based on a colour blob tracker and a proportional-derivative (PD) controller
to generate the required pitch and yaw commands; finally, Gao et al. [8], in a
more recent approach, introduce a hierarchical scheme for controlling underwater
vehicles based on an adaptive neural network.

Some object detection methods based on a combination of a detection and
a tracking stage have served us as inspiration while developing our approach.
Dayoub et al. [5] have recently introduced a vision-based method for the identi-
fication and tracking of Crown-Of-Thorns starfishes in coral reefs. This method
makes use of a machine learning approach for detection (based on a random for-
est classifier) and a particle filter for tracking. In [17], Martinez et al. describe a
method for detecting and tracking electric towers using an aerial platform. The
detection stage also utilizes machine learning through a two-class multilayer per-
ceptron for target detection, while the tracking stage is based on a hierarchical
strategy.

3 Visual Control Approach

Figure 1 outlines our approach. As can be seen, the system comprises a module
to detect and track the object in the image (DAT) and a module to generate
the corresponding control velocities for the vehicle (IBVS). Initially, the target
is selected in the current image by defining a Region of Interest (ROI). The DAT
module computes then a set of SIFT keypoints [16], which are used as a visual
target model to search and track the target in the image stream. The coordinates
of the ROI where the target has been found are accordingly updated and sent
to the IBVS module, which generates the necessary control commands that are
to make the target get centred in the image. Both modules, DAT and IBVS, are
detailed next.
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Fig. 1. Outline of the visual control approach. The DAT module is in charge of detect-
ing the target in the current image and feed the IBVS module, which generates the
AUV control commands.

Fig. 2. Target detection and tracking strategy, based on the interaction between the
detection and tracking stages. ST flags the current operation mode.

3.1 Target Detection and Tracking

As shown in Fig. 2, our strategy to estimate the position of the target in the image
plane is based on two different stages, detection and tracking, which interact with
one another. The detection stage is computationally expensive but robust to
appearance changes. Conversely, the tracking stage is a more efficient process,
but tends to lose the target from time to time, depending on the operating
conditions. Taking into account these considerations, our strategy employs the
tracking stage as much as possible and the detection stage is only used when
the tracking system needs to be reinitialized. The system starts executing the
detection stage of the DAT module. If the target is found in the current image,
the corresponding bounding box is set as the ROI and used to initialize the
tracking process. This stage keeps estimating the position of the target until
it considers that it has lost track of it. In such a case, the detection process
activates again and operates until the target is relocated.

The detection stage begins computing a set of SIFT keypoints in the current
image. SIFT has been selected due to its well-known tolerance to appearance
changes [16], what usually results convenient in underwater environments. In
order to determine the presence of the target in the scene, a collection of puta-
tive matches are found between the current image SIFT descriptors and the
target model, also consisting of a set of SIFT descriptors. For efficiency reasons,
this step is implemented using a set of randomized kd-trees, which index the
SIFT descriptors of the target model by means of several hierarchical struc-
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tures. Using these kd-trees, for each SIFT descriptor found in the current image,
the nearest and the second-nearest neighbours are searched and then the nearest
neighbour distance ratio test [16] is applied to discard incorrect matches. Next,
the surviving matches are employed to compute a homography between both
sets of descriptors. The estimation of this homography relies on Random Sam-
ple Consensus (RANSAC) [7] as a robust estimation algorithm to minimize the
error and discard outliers. After that, if the resulting number of inliers is high
enough, we consider that the target has been found and the resulting homog-
raphy is used to determine the coordinates of the target corners in the current
image. The minimal up-right bounding box is calculated using these coordinates,
and the corresponding corners used as input to the IBVS module.

For the tracking stage, we have considered two well-known visual tracking
algorithms, Struck [11] and KCF [12], which have correspondingly been adapted
to our purposes, so that the system can make use of any of them. Nonetheless,
we have empirically noted that KCF performs better in computational terms.
Irrespective of the option chosen, during tracking, we determine whether the
target has been lost in order to correctly feed the IBVS module during the full
intervention mission. We have opted for computing the χ2 distance between two
Pyramid of Histograms of Orientation Gradients (PHOG) descriptors [1], one
for the target and one for the current ROI, provided by the tracker. This global
descriptor, originally developed for image classification, has been configured for
this application for 60 bins and 3 levels, generating a real-valued vector of 1260
components. The detection stage becomes active again when the χ2 distance is
high enough. This threshold clearly affects the number of times that the detection
stage is executed.

3.2 Image-Based Visual Servoing

IBVS control operates in terms of image positions. In one of the many pos-
sible approaches, the goal is to make a set of image points (features) s
attain a set of desired positions s∗, which implicitly moves the involved plat-
form. To this end, IBVS defines a model that relates the camera velocities
ξc(t) to the velocities of the selected features over the image plane ṡ(t) =
[ṡ1,x(t), ṡ1,y(t), . . . , ṡn,x(t), ṡn,y(t)]T through the so-called interaction matrix
L [4]. In our case, we conveniently include the transformation from robot to
camera cTr, to obtain velocity commands in the robot frame (ξr):

ṡ(t) = Lξc(t) = L (cTr ξr(t)) = L′ ξr(t) . (1)

Robot motion needed to move the image features to the desired image positions
is then derived from (1) in the form of (2):

ξr = (L′)+ ṡ(t) , (2)

where (L′)+ is the pseudoinverse of L′ resulting from a least squares framework.
For our application, the corners of the ROI detected by the DAT module are
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used as the features s, while, to set s∗, those corners are required to get centred
in the image.

In general terms, IBVS is designed to make the current feature positions s(t)
coincide with the set of desired positions s∗, i.e. minimize the corresponding
error function e(t) = s(t) − s∗. In our approach, similarly to [15], we adopt a
PID-like control scheme to this end, so that the final control law results to be:

ξr(t) = −(L′)+
(

λp e(t) + λi

∫ t

0

e(τ) dτ + λd
d e(t)

dt

)
(3)

being λp, λi and λd the, respectively, proportional, integral and derivative gains
of the controller. This control scheme is replicated for each degree of freedom
(d.o.f) of the AUV that needs to be controlled, adopting an uncoupled control
solution, so that different gain values result for each d.o.f.

As previously said, in this work, we make use of the ROI corners as image
features, which have to be properly tracked to correctly compute the error func-
tion e(t) required by (3). Additionally, the appearance of the target is updated
during the intervention to improve the performance of the tracking module; the
update takes place whenever the norm of e(t) is low enough.

4 Experimental Results

The visual control approach described in this paper has been implemented under
the AUV control framework COLA2 [18] as a set of ROS/C++ nodes [9,10].
Our implementation has been first tested under simulation within the UWSim
simulator [21], and lastly on a real AUV.

Both approaches make use of the same software as for the DAT and the IBVS
modules, running on an Intel i5 @ 2.4 GHz/8 Gb RAM computer. The input for
the whole system is a rectified 512 × 384 colour image stream at 10 frames
per second, altogether with the camera calibration information (intrinsics and
extrinsics) and the vehicle altitude (e.g. to compute the distance to the target),
whilst the output is a body-centered velocity request which is sent to the vehicle
controller. This request contains surge, sway and yaw velocity commands. Heave
is governed by the altitude controller available in the AUV control architecture.

The robot is a 1.6 m long torpedo-shaped AUV, named SPARUS II [2],
designed and built by the University of Girona, Spain. The vehicle is equipped
with three propellers, one in heave and two in surge, a Doppler Velocity Log
(DVL), a Global Positioning System (GPS), an Inertial Measurement Unit
(IMU) and a pressure sensor. These navigation sensors are fused in an Extended
Kalman Filter (EKF) whose output is the position and orientation of the vehicle.
The nose of the vehicle holds a modular payload area that can be equipped with
the needed sensors for a particular intervention. In the context of the project
MERBOTS, the vehicle has been equipped with an additional propeller that
allows the vehicle to move in sway, and a Bumblebee2 stereo camera oriented
at a 45-degree angle. This camera configuration permits us to keep the platform
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at a certain distance from the target, avoiding interferences during the manip-
ulation task performed by the H-ROV (as described in Sect. 1). Therefore the
vehicle is governable in surge, sway, heave and yaw. Pitch and roll are passively
stabilized by means of floats and loads in the vehicle.

The next sections report on the results obtained during some of the simulation
and field experiments which have been carried out. In order to show the visual
control approach working on the real AUV, the videos for the following water
tank and open sea experiments have been made publicly available at http://srv.
uib.es/superion.

4.1 Simulation Results

The dynamic model of SPARUS II has been incorporated into UWSim to eval-
uate the performance of the visual servoing under three different external per-
turbations: (1) surge, (2) sway and (3) yaw rotation, trying to emulate possible
effects of underwater currents.
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Fig. 3. Simulation results in UWSim. The vehicle is requested to move in three different
degrees of freedom using a remote controller (through the Teleop module), while the
visual servoing module (IBVS) responds to these perturbations. The IBVS commands
succeed in decreasing the error by moving the vehicle to the desired position.
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Figure 3 shows the evolution of the position and orientation of the vehicle
under velocity requests, coming from the Image-based Visual Servoing (IBVS)
module, while external perturbations, introduced by means of a remote controller
through the Teleop module, are in place. In this figure, the error is expressed as
the average Euclidean distance in pixels between the corners of the desired and
the detected target ROIs. Starting with a centred and tracked object, a negative
surge speed is requested at time 40:20. As soon as the target is no longer in the
centre of the image, the IBVS module sends velocity commands to the AUV.
This same behaviour can be seen for sway commands (time 40:50) and for a

Fig. 4. CIRS water tank experiment (I). SPARUS II AUV and Girona-500 H-ROV
during a water tank trial intervention. SPARUS II is running the DAT and the IBVS
modules to provide the H-ROV pilot with a second point of view of the area.

Fig. 5. CIRS water tank experiment (II). SPARUS II camera view under visual ser-
voing. The detected ROI is shown in green, while the desired position is indicated in
red. In order to minimize the error, the IBVS module has to command the vehicle to
match the four corners as close as possible.
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rotation in yaw (time 41:30). In these three cases, the vehicle is requested by
IBVS to move to a position where the target is again centred in the image, thus
decreasing the IBVS error.

The transient response strongly depends on the value of the PID gains, affect-
ing the speed, settling time and overshoot of the system. These values have been
tuned to achieve a movement free of motion blur in the camera image. The
oscillatory surge response which can be observed is mostly due to the low hydro-
dynamic drag of the simulated vehicle.

4.2 Water Tank Experiments

A number of water tank tests have been carried out at the facilities of the Girona
Underwater Vision and Robotics Centre (CIRS), in order to validate the target
detection/tracking and platform servoing functionalities prior to the field tri-
als at sea, similarly to the simulation experiments. Figure 4 shows the complete
intervention scenario employed as the experimental set-up. As can be observed,
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Fig. 6. CIRS water tank experiment (III). The vehicle is requested to move in surge
by means of the remote controller (through the Teleop module) and the visual servoing
(IBVS) counteracts the displacement, diminishing the error between the desired and
the detected ROI corners.
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this scenario comprised an amphora, to be grasped during the intervention, and
a set of AR markers to share a common reference frame between the two sub-
marines involved. These markers are not used for detection nor tracking.

The viewport of SPARUS II performing visual servoing of the amphora can
be found in Fig. 5, where the detected ROI is drawn in green and the desired
positions of these same corners appear in red. As explained before, the velocity
commands to the vehicle depend on the positions of the two sets of corners.

In Fig. 6, a perturbation in surge is shown at time 28:30, starting with a
centred and tracked object. As before, IBVS starts sending velocity commands
as soon as the target gets out of its centred position, moving the AUV to a
position that diminishes the error, e.g. with the object in the centre of the
image. In this scenario, the error jumps to zero twice when the tracking gets
lost. On the next few frames, the target is quickly re-detected and IBVS moves
the vehicle accordingly.
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Fig. 7. Sea trials at Sant Feliu de Guixols (II). IBVS reacts to the ocean currents
demanding surge, sway and yaw velocity requests, accomplishing (1) bounded error
performance [7–12% of half the image diagonal length] and (2) confinement of the
target in the camera FOV at all times.
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4.3 Open Sea Experiments

Sea trials were carried out at Sant Feliu de Guixols (Girona), where our complete
approach was tested under real ocean currents. The two vehicles were deployed
and were working at a depth of six to ten meters. The seabed was covered in
mud, poor in features, and the lack of light made the intervention conditions
not quite similar to the previous water tank tests. Velocity requests to keep the
target in the camera FOV during another experiment are reported in Fig. 7.

This challenging scenario shows that not only is the IBVS capable of holding
such currents, but we can also see that the error is bounded, even when tracking
gets lost (in Fig. 7 [middle] IBVS jumps to zero error when tracking is lost) and
new detections have to be performed. Note that the orientation is stretched in
the figure, thus the minima to maxima difference is about nine degrees.

5 Conclusions

This paper has described a complete and robust vision-based framework for
controlling an AUV. Our approach is devised to keep a constant, although alter-
native, point of view of a predefined target during an intervention mission. Due
to this reason, the solution consists of two main components: a detection and
tracking module, which is in charge of estimating the position of the involved
target in the image stream, and an image-based visual servoing module, which
generates the velocities required to maintain the target centred in the image
plane. The solution has been validated by means of several experiments using a
real platform and under different operating conditions.

Referring to future work, we believe that recent results on deep learning
methods for object detection [6] is a potential research line to investigate to
further improve our solution. We will also investigate other tracking methods
that does not restrict the target to a rectangular ROI (as required by Struck [11]
and KCF [12]). Finally, we plan to consider the implementation of other visual
servoing methods and their suitability for underwater environments.
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