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Abstract 

This paper is one of a series of three describing the MERBOTS project, a three-year research initiative funded under the well-

known DPI Spanish research program. In brief, MERBOTS aims at progressing in the field of underwater intervention operations. 

Nowadays, when the mission area is too deep and risky to be carried out by divers, the alternative consists in using remotely operated 

vehicles (ROV). This is a difficult and expensive solution requiring sophisticated support infrastructure and specialized personnel. 

Consequently, the use of robotic technology is normally limited to strategic or high added value operations, e.g. rescue, offshore 

industry or security and defense. The MERBOTS project proposes a robot-based intervention system, and the underlying 

methodology, that will permit safer intervention tasks, at a lower cost, and operationally simpler, thanks to multi-robot cooperation 

and extensive use of multimodal perception systems. As a result, new application areas, such as marine archaeology at high depth, 

turn to be affordable, with important consequences not only from the economic point of view, but also scientifically, socially and 

culturally speaking. As a final note, MERBOTS is a coordinated project involving three different Spanish research groups at 

University Jaume I of Castellon (UJI), University of Girona (UdG) and University of Balearic Islands (UIB), where each group is 

assuming specific goals under three different subprojects and the coordination of UJI. It is the intention of this consortium to describe 

MERBOTS through three different papers, corresponding each to one of the subprojects. This paper provides thus the UIB point of 

view in the form of the SUPERION subproject. SUPERION mainly focuses on the perception aspects of the intervention operation. 

In particular, in this paper we address the target detection, tracking and recognition tasks, and present first experimental results for 

the archeological application. Copyright © XXXX CEA. 
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1. Introduction 

In the last decades, robots have been used to explore areas 

hard to reach for humans. Underwater environments fall into 

this category, since their operating conditions make even 

simpler operations risky to be carried out by divers, especially 

when they have to be performed at high depth. A possible 

approach to overcome this problem is to use a Remotely 

Operated Vehicle (ROV), although this easily becomes a 

difficult and expensive solution because it usually requires a 

sophisticated support infrastructure and specialized staff. In this 

regard, the project MERBOTS proposes a new robot-based 

methodology to make intervention tasks safer, simpler and at a 

lower cost. On the one hand, our methodology considers a semi-

supervised operation, i.e. an operator is within the main control 
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loop, assisted by the system during the operation. On the other 

hand, the proposed system comprises two vehicles, being one 

of them a Hybrid ROV (H-ROV) equipped with an arm and a 

manipulator, as well as the necessary perception devices, which 

altogether implement the supervised intervention task, while the 

other is an Autonomous Underwater Vehicle (AUV) endowed 

with cameras to provide alternative points of view of the target 

for the operator in charge of the H-ROV, enabling thus a more 

robust and reliable operation. In this paper, we focus on the 

visual target detection and tracking tasks to be performed to 

provide this secondary view, as well as on the target recognition 

task that provides input to the manipulator from the point clouds 

regularly stemming from the perception devices the H-ROV is 

equipped with. These are part of the goals addressed by the 

SUPERION subproject (together with visual mapping, 3D 
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reconstruction and multi-modal sensor fusion), for which we 

also report preliminary experimental results. 

To provide the alternative view, the object to manipulate 

must be ensured to appear continuously in the field of view of 

the camera placed in the AUV. This naturally leads to the 

implementation of a visual servoing task, whose input is the 

image stream coming from the AUV camera and its outputs are 

the velocity commands to be sent to the vehicle controller so as 

to keep the target in the field of view at all times. Due to its 

well-known robustness and simpler implementation, in this 

application, we choose an Image-Based Visual Servo-control 

(IBVS) approach (Chaumette & Hutchinson 2006). From a 

global point of view, the solution comprises two interacting 

processes, target detection and tracking, which provide input to 

the visual servo control strategy.  

The intervention operation is performed in parallel with the 

generation of these alternative views. As mentioned before, an 

operator is involved during the intervention, making decisions 

with the assistance of the system, which, among others, 

recognizes the target in the perception data stream and provides 

input to the subsystem guiding the arm and the manipulator. The 

perception stream consists, in this case, in a sequence of point 

clouds of the scene which are generated by a suitable device, 

e.g. a stereo camera or an underwater laser scanner, carried by 

the H-ROV. A 3D model of the object to recognize, from a 

library of possible targets, is employed through a sequence of 

matching operations which aim at providing the manipulator 

controller with the target pose, i.e. position and orientation, to 

readily perform the grasping step. 

The rest of the paper is organized as follows: Section 2 

describes the alternative view generation approach; Section 3 

details the target recognition algorithm; to finish, conclusions 

are summarized in Section 4. 

 

2. Alternative view generation approach 

 

Figure 1 outlines our approach, comprising the target 

detection and tracking (DAT) module and the visual servoing 

(IBVS) module, which generates the corresponding control 

velocities for the vehicle (IBVS). Initially, the target is selected 

in the current image by defining a Region of Interest (ROI). The 

DAT module computes then a set of SIFT keypoints (Lowe 

2004) as the target model. This model is used to search and track 

the target in the image stream. The coordinates of the ROI 

where the target has been found are accordingly updated and 

sent to the IBVS module, which generates the necessary control 

commands that are to make the target get centered in the image. 

Both modules, DAT and IBVS, are detailed next. 

 

2.1 Target detection and tracking 

As shown in Figure 2, our strategy to estimate the position 

of the target in the image plane is based on two different stages, 

detection and tracking, each interacting with one another. The 

detection stage is computationally expensive but robust to 

appearance changes. Conversely, the tracking stage is a more 

efficient process, but tends to lose the target from time to time. 

Taking into account these considerations, our strategy employs 

the tracking stage as much as possible and the detection stage is 

only used when the tracking system needs to be retrained.  

The system starts executing the DAT module. If the target is 

found in the current image, the corresponding bounding box is 

set as the ROI and used to initialize the tracking process. This 

stage keeps estimating the position of the target until it 

considers that it has lost track of it. In such a case, the detection 

process activates again and operates until the target is relocated. 

 

 
Figure 1: Outline of the alternative view generation approach. The DAT 

module is in charge of detecting the target in the current image. The detected 

position is then used by the IBVS module to generate the AUV control 

commands. 

 

 
Figure 2: Target detection and tracking. As can be seen, the strategy is based 

on the interaction between the detection and tracking stages. ST (status) 
flags the current operation mode: D – detection, T – tracking. 

 

The detection stage begins computing a set of SIFT 

keypoints in the current image. A collection of putative matches 

are found between the current image SIFT features and the 

target model, also consisting of a set of SIFT features. For 

efficiency reasons, this task is implemented using a set of 

randomized kd-trees and applying the nearest neighbour 

distance ratio test to discard incorrect matches (Lowe 2004). 

The surviving matches are then employed to compute a 

homography between both descriptors. After that, if the 

resulting number of inliers is high enough, we consider that the 

target has been found and the resulting homography is used to 

estimate the coordinates of the target ROI corners in the current 

image. The minimal up-right bounding box is calculated using 

these coordinates, and the corresponding corners used as input 

by the IBVS module. 

For the tracking process, we have considered two well-

known visual tracking algorithms, Struck (Hare et al. 2016) and 

KCF (Henriques et al. 2015), which have correspondingly been 

adapted to our purposes, so that the system can make use of any 
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of them. Nonetheless, we have empirically noted that KCF 

performs better in computational terms. In any case, during 

tracking, we compute the distance between global PHOG 

descriptors (Bosch et al. 2007) for the target and the current ROI 

to determine whether the target has been lost. The detection 

stage becomes active again if this distance is higher than a 

threshold. 

 

2.2 Image-based visual servoing 

IBVS control operates in terms of image positions. In one of 

the many possible approaches, the goal is to make a set of image 

points (features) 𝑠 attain a set of desired positions 𝑠∗, which 

implicitly moves the involved platform. To this end, IBVS 

defines a model that relates the camera velocities
𝐶

(𝑡) to the 

velocities of the selected features over the image plane �̇�(𝑡) =
[�̇�1,𝑥(𝑡), �̇�1,𝑦(𝑡), ⋯ , �̇�𝑛,𝑥(𝑡), �̇�𝑛,𝑦(𝑡)]𝑇 through the so-called 

interaction matrix L (Corke 2011). In our case, we conveniently 

include the transformation from robot to camera 𝑇𝑅
𝐶, to obtain 

velocity commands in the robot frame (
𝑅

): 

 

�̇�(𝑡) =  𝐿
𝐶

(𝑡) = 𝐿(𝑇𝑅
𝐶

𝑅
(𝑡)) =  𝐿′

𝑅
(𝑡) (1) 

 

Robot motion needed to move the image features to the desired 

image positions is then derived from equation (1) in the form of 

equation (2): 

 


𝑅

(𝑡) = (𝐿′)+ �̇�(𝑡) (2) 

 

where (𝐿′)+ is the pseudoinverse of 𝐿′. For our application, the 

corners of the ROI detected by the DAT module are used as the 

features 𝑠, while, to set 𝑠∗, those corners are required to get 

centered in the image.  

In general terms, IBVS is designed to make the current 

feature positions 𝑠 coincide with the set of desired positions 𝑠∗, 

i.e. minimize the corresponding error function e(t)  =  s(t)  −
 𝑠∗. In our approach, we adopt a PID-like control scheme to this 

end, so that the final control law results to be: 

 


𝑅

(𝑡) = (𝐿′)+  (𝑝𝑒(𝑡) + 𝑑
𝑑𝑒(𝑡)

𝑑𝑡
+  𝑖 ∫ 𝑒(𝑡)𝑑𝑡

𝑡

0
) (3) 

 

being 𝑝, 𝑖 and 𝑑  the, respectively, proportional, integral and 

derivative gains of the controller. This control scheme is 

replicated for each degree of freedom (d.o.f) of the AUV, 

adopting an uncoupled control solution, so that different gain 

values result for each d.o.f. 

As previously said, in this work, we make use of the ROI 

corners as image features, which have to be properly tracked to 

correctly compute the error function 𝑒(𝑡) required by equation 

(3). Additionally, the appearance of the target is updated during 

the intervention to improve the performance of the tracking 

module; the update takes place whenever the norm of 𝑒(𝑡) is 

low enough (see Figure 1).   

 

2.3 Experimental results 

Figure 3 illustrates some experiments involving the Girona-

500 platform (Ribas et al. 2012) as H-ROV and the Sparus II 

platform (Carreras et al. 2013) as the AUV, being the latter 

fitted with a lateral thruster for sway motion. These pictures 

come from a first series of field trials performed by the 

MERBOTS consortium in a water tank at the Research Center 

in Underwater Robotics (CIRS, UdG) and in the sea at Sant 

Feliu de Guíxols (Girona). Videos of trials in both the water 

tank and at sea are also available at http://srv.uib.es/superion. 

 

 

 

 
Figure 3: Illustration of a multi-robot operation: [rows 1 & 2] pictures from 
two intervention operations in a water tank involving the H-ROV and the 

UAV, the latter providing an alternative view of the scene; [row 3] 

MERBOTS GUI during an intervention in the sea: the right subimage 
illustrates the state of the IBVS during the operation, where the red and the 

green boxes correspond to, respectively, the detected/tracked corners (𝑠) 

and the desired corners (𝑠∗). 
 

3. Target recognition approach for grasping 

In this section, we describe our approach for recognizing a 

specific object in a point cloud, which has been used not only 

http://srv.uib.es/superion
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for detecting the presence of the target in the scene during the 

intervention operation, but also to determine its pose over the 

sea floor in order to use it as input during the grasping operation. 

To this end, the algorithm assumes the availability of a 3D 

model of the target, which is registered to the incoming point 

clouds.  

After filtering the current point cloud to discard outliers 

(arising from time to time depending on the operating 

conditions and the sensor used, e.g. a stereo pair or a laser 

scanner), the object recognition pipeline comprises two stages, 

detection and tracking, which alternate according to the quality 

of the results. The detection stage combines two target detection 

methods which aim at being able to locate the target over 

generic backgrounds, being either a flat sandy seabed or a non-

regular rocky surface. The tracker essentially makes use of a 

fast registration strategy to update the target pose from point 

cloud to point cloud, assuming slow or no motion in-between. 

Our strategy employs the tracking stage as much as possible 

for efficiency reasons. Figure 4 outlines the full process. 

 

 
Figure 4: Object detection and tracking pipeline: i.g. stands for initial guess, 

while ST (status) flags the current operation mode: ND – target not 

detected, D – target detected. 

 

Both processes make use, one way or another, of the Iterative 

Closest Point (ICP) algorithm (Pomerleau et al. 2015). ICP is 

commonly used to obtain the transformation that aligns two 

point sets, where one point set, the reference, is kept fixed, 

while the other, the source, is transformed to best match the 

reference. The ICP algorithm mainly works searching, for each 

point in the source point set, the closest point in the reference 

point set. In our case, the ICP is used to estimate the spatial 

transformation that aligns the target and the scene, and to obtain 

a fitting score as the average distance between the points of one 

set to the nearest points of the other set. The two sets are deemed 

to match if this score is low enough.  

 

3.1 Target detection 

The purpose of this stage is to detect the target in the scene 

point cloud and provide a first approximate location. As a first 

step, this stage starts by rectifying the point cloud using the 

known, constant transformation from sensor to robot, so that the 

scene point cloud frame is “parallel” to the robot frame (and 

also independent of the sensor, e.g. a stereo camera or a laser 

scanner, the point cloud comes from). 

A RANSAC-based plane model segmentation (Fischler & 

Bolles 1981) follows next to the point cloud rectification, in 

order to search for all the points within the point cloud that 

support a plane model. This is to detect the ground plane, and 

the objects lying over it, within those scenes where the seabed 

is horizontal, typically sandy areas. The next step subtracts the 

ground plane from the point cloud. 

The resulting point cloud is next sliced into vertical layers 

along the direction of the Z axis using𝑧 increments, while the 

target model is sequentially registered to the respective point 

sets. When the target model is determined to register with the 

current slice with low error, the target is considered to have been 

found and the slice centroid is used as initial guess to register 

the target model to the full point cloud.  

This segmentation-by-height-and-match method has been 

shown to both reduce the execution time and improve the 

registration when there are multiple objects lying over the floor.  

In case the floor is not planar, the previous steps based on 

detecting the seafloor plane are prone to fail, what activates a 

second strategy which repeats the process without background 

plane subtraction.  

When the target is detected, its pose is saved to be used as 

initial guess by the tracking stage and transformed to the world 

frame to be published for the grasping process. 

 

3.2 Target tracking 

Once the object has been detected, the tracking module 

evaluates the next point cloud using the previous pose as the 

initial guess for the registration between the input cloud and the 

target. Unlike the detection process, this stage does not require 

a rectified point cloud, because no height segmentation is 

required, but the target has to be registered against the input 

scene.  

If the registration succeeds, i.e. the registration error is low 

enough, then the object is considered correctly tracked, the 

detected pose saved for the next tracking cycle and also 

transformed to the world frame, to be finally published to guide 

the grasping.   

If the registration fails for more than 𝑁 consecutive times, 

the system is considered to have lost track of the target and the 

process is reinitialized to the target detection mode. In our 

experiments, N was set to 5. 
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3.3 Experimental results 

Figures 5 and 6 show preliminary successful target recog-

nition results for two experiments from the series of field trials 

mentioned in Section 2.3, finishing both in a correct grasping.  

 

 

 

 
 

 
Figure 5: Illustration of an object recognition operation at the CIRS water 
tank: [row 1] Girona-500 and Sparus II platforms and global view of the 

scene; [row 2] example of image captured by the H-ROV; [row 3] different 

views of the recovered point cloud together with the target detected (red 
points) and its pose (coloured frame at [row 3, left]); [row 4] successful 

grasping. 

 

As can be seen, one figure reports on an experiment at the 

water tank, while the other corresponds to a sea trial. Both 

figures show the target which is to be grasped by the Girona-

500 manipulator, a sort of waterwheel bucket. In both cases, the 

point clouds come from a stereo camera carried by the H-ROV. 

Videos at http://srv.uib.es/superion also report on the target 

recognition/grasping experiments. 
 

 
 

  
 

 
Figure 6: Illustration of an object recognition operation at sea: [row 1] 

global view of the scene; [row 2] different views of the recovered point 

cloud together with the target detected (red points) and the estimated pose 
(coloured frame at [row 2, left]); [row 3] successful grasping. 

 

4. Conclusions 

In this paper, we have addressed target detection, tracking 

and recognition issues related to the MERBOTS/SUPERION 

projects. For validation purposes, a first series of field trials in 

a water tank at the Research Center in Underwater Robotics 

(CIRS, UdG) and in the sea at Sant Feliu de Guíxols (Girona) 

have been recently performed by the MERBOTS consortium. 

Successful results for some of these trials, involving the Girona-

500 and the Sparus II platforms in an archeological underwater 

application, have been reported. 

 

http://srv.uib.es/superion
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