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Abstract—In this paper, we propose a novel appearance-
based approach for topological mapping based on a hierarchical
decomposition of the environment. In our map, images with
similar visual properties are grouped together in nodes, which
are represented by means of an average global descriptor and
an index of binary features based on a Bag-Of-Words online
approach. Each image is represented by means of a global
descriptor and a set of local features, and this information is
used in a two level loop closure approach, where, first, global
descriptors are employed to obtain the most likely nodes of the
map and, then, binary image features are used to retrieve the
most likely images inside these nodes. This hierarchical scheme
enables us to reduce the search space when recognizing places
maintaining a high accuracy when creating a map. Our approach
is validated using several public datasets and compared against
several state-of-the-art techniques. The accuracy and the sparsity
of the generated maps are also discussed.

Index Terms—Appearance-based localization, place recogni-
tion, topological mapping, loop closure, bag of binary words.

I. INTRODUCTION

MAPPING is an essential problem in mobile robotics.
The outcome of this process is a representation of

the environment built using the information received through
the sensors attached to the robot. This map is then used in
other tasks such as localization, path-planning and obstacle
avoidance and is of special interest for autonomous robotics,
where the agents need to be able to operate without human
interaction. Different kinds of devices, such as ultrasonic or
laser sensors, have been used during years to construct these
maps. However, in the last two decades, there has been a
growing interest in visual solutions, because of the low cost
of cameras and the richness of the sensor data provided.

As far as robotic mapping is concerned, two main paradigms
are generally accepted: metric and topological mapping. Met-
ric maps represent the world as accurately as possible, main-
taining a lot of information about environment details, such
as distances, measures or sizes, and they are usually ref-
erenced according to a global coordinate system. However,
metric maps are more difficult to build and maintain, and are
computationally demanding. Conversely, topological maps [1]
represent the environment in an abstract manner by means
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of a graph, where nodes represent distinctive places in the
environment and arcs model the relations between them. These
maps are simple and compact, scale better and require much
less space to be stored than metric maps.

Recent vision-based topological mapping approaches [2]–
[9] are mainly based on loop closure detection, which entails
the correct identification of previously visited places from
sensor data. These solutions usually generate dense topological
maps, where each input image is introduced as a new node in
the map. In these cases, despite the use of different indexing
techniques [10], this can be unfeasible for large environments.
A hierarchical representation of the environment [11], where
images which present a similar appearance are grouped to-
gether in nodes, can help in these cases, reducing the search
space when finding similar places.

When using vision for mapping tasks, it is necessary to
describe the acquired images and be able to compare the
descriptions, being the quality of the map dependent on the
description method. Most of the recent works that can be
found in the literature make use of the Bag-of-Words (BoW)
approach [10], where usually SIFT [12] or SURF [13] descrip-
tors are quantized according to a reference visual dictionary,
built from a training set in an offline step. However, binary
features developed recently such as BRIEF [14], BRISK [15],
ORB [16], FREAK [17] or LDB [18] can be also used in an
online BoW scheme, avoiding the training step, as presented in
our previous work [19]. Another group of solutions make use
of global descriptors [20], [21], which are faster to compute
but more sensitive to noise and illumination changes.

In this paper, we present a topological mapping framework,
called Hierarchical Topological Mapping (HTMap), which is
based on a novel hierarchical place recognition approach. In
our approach we combine a global descriptor, which is used
to obtain similar places to the current image, with binary
local features, which are then used for achieving a more
accurate place recognition. In more detail, in HTMap, images
with similar visual properties are stored in locations. Each
location is represented by means of a global descriptor, which
summarizes the visual appearance of the images stored inside
the node, and by an index of binary image features based on
an online BoW scheme [19], which can be used to query the
node using local image features.

As a main contribution of this paper, we introduce a
robust hierarchical loop closure algorithm, which operates in
a two-level approach. First, Pyramid Histogram of Oriented
Gradients (PHOG) [21] global descriptors are calculated and
employed for selecting the most similar locations to the current
image, avoiding the need of searching in the whole map
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and speeding up the retrieval process. Next, binary local
features extracted from the current image are used to query
the indices of the locations obtained at the previous step in
order to find similar images inside the retrieved locations. The
scores obtained at the two levels are combined as a likelihood
function inside a Bayes filter to determine the most similar
image to the current one. Two additional contributions are, on
the one hand, a scalable method to construct topological maps
which employs, as a key component, the above-mentioned
hierarchical loop closure algorithm, and, on the other hand,
to the best of our knowledge, the use for the first time
of the PHOG descriptor for mapping and localization tasks.
PHOG represents local image shape and its spatial layout,
and was originally devised for image classification. Finally,
we performed an extensive evaluation of our approach and a
comparison with some state-of-the-art techniques, achieving
better results in several public datasets.

The rest of the paper is organized as follows: Section II
overviews fundamental works in the field, Section III in-
troduces the image description techniques used in our ap-
proach and summarizes the corresponding indexing methods,
Section IV explains the structure of the map generated by
our approach, Section V details our topological mapping
framework, Section VI reports on the results of the different
experiments performed, and Section VII concludes the paper.

II. RELATED WORK

Most of the vision-based topological mapping techniques
developed during the last fifteen years can be mainly classified
according to the description method used [22].

Global descriptors describe the image in a holistic manner,
using the full image as input to the process. These descriptors
generate a single description for the whole image and are
usually fast to compute. However, they present less robustness
to occlusion and illumination effects, what results into a lower
discriminative power. Histograms provide a compact way of
representing an image and have been used for topological
mapping in different forms, e.g. colour histograms [23] or gra-
dient orientation histograms [24]. Recently, several approaches
based on the Gist descriptor [20] have emerged, specially
applied to omnidirectional images [25]. Motivated by the
success of Gist and the BRIEF binary feature descriptor [14],
Sunderhauf and Protzel [26] adapted the former to be used
as a global descriptor, introducing BRIEF-Gist. As a main
drawback, BRIEF-Gist is not able to detect bidirectional loops.
In this regard, Arroyo et al. [27], [28] introduced an algorithm
called Able for Binary-appearance Loop-closure Evaluation
applied to Panoramas (ABLE-P) which can deal with these
cases. Another successful example of place recognition system
using a global description approach is SeqSLAM [29], where
instead of searching for a single previously seen image given
the current frame, they performed the localization process
recognizing coherent sequences of local consecutive images.

Several authors have used local features to perform topolog-
ical mapping and localization tasks, specially since the release
of the Lowe’s Scale-Invariant Feature Transform (SIFT) al-
gorithm [30]–[34]. Some researchers constructed hierarchical
maps of the environment using local features in an offline

step. That is the case of Zivkovic et al. [35], which presented
a hierarchical representation that was later employed in [36],
[37]. Unlike these works, the proposal presented here can deal
with the construction of the map as new images arrive to the
algorithm and relies on a full topological method instead of
combining topological and metrical approaches. In a previous
work [38] we proposed an appearance-based approach for
visual mapping and localization based on local features.

The BoW algorithm [10], [39] is one of the most used
techniques for appearance-based mapping and loop closure
detection, since, in combination with an inverted index, it
is a powerful tool to search for previous images. The idea
is to quantize the detected local features (commonly SIFT
or SURF) in the image according to a set of representative
features, known as visual vocabulary, which can be generated
offline or online. Probably the most well-known solution
that generates the dictionary offline is Fast Appearance-Based
Mapping (FAB-MAP) [3], [4], where the probabilities of
visual word co-occurrences were approximated by means of
a Chow-Liu tree. Later, an improved version called FAB-
MAP 2.0 [5], [6] was presented adapting the probabilistic
model to be used with an inverted index architecture similar to
typical image search engines. This scheme was assessed using
a dataset of 1000 km composed by omnidirectional images
and GPS coordinates to be used as ground truth. Given that
binary descriptors have been developed recently and, hence, it
is a very recent research area, only a few attempts to create
dictionaries from binary features can be found [9], [40].

A main shortcoming of generating the visual dictionary
offline is the need of a training phase, which can take hours.
Furthermore, this dictionary may not be representative of the
scenario if the robot operates in a different environment. An
alternative is to build the codebook online in an incremental
manner, while the robot discovers the environment. In this
regard, the work of Angeli et al. [7], [8], which employs
the approach of Filliat [41] for generating visual dictionaries
dynamically, can be considered of high importance in the field.
Other approaches that fall into this category are Real-Time
Appearance-Based Mapping (RTAB-Map) [42] and Online Vi-
sual Vocabulary (OVV) [43]. Given the benefits of generating
the visual dictionary online and the use of binary features,
recently we introduced a method for indexing binary features
to build a dictionary online, already validated for loop closure
detection in [19]. This method is used in this work for indexing
images according to the binary local features detected.

Only a few of the solutions presented so far focus on
generating a sparse representation of the environment. Re-
garding sparse topological mapping and hierarchical loop
closure, there are some works which are briefly reviewed
in the following. Maohai et al. [44] presented a hierarchical
localization approach based on omnidirectional vision where,
in a first step, colour histograms allow to select a subset
of the images stored in the map. Next, SIFT local features
are used to obtain a more accurate localization inside this
subset. Unlike this work, in our approach, the map is built
online, monocular images are used instead of omnidirectional
images and binary features are employed instead of classical
real-valued descriptors, such as SIFT or SURF. Other place



IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. X, XXX 201X, REGULAR PAPER 3

recognition solutions which have appeared recently are based
on the BoW framework, adapting FAB-MAP to work as a
hierarchical approach [45] or maintaining an inverted file per
group of images or environments [46]. In these works, the
visual dictionary is built offline through a training step, which
we would like to avoid. Moreover, the work by Mohan et
al. [46] deals with different image sequences, from different
environments, and intends to localize the robot first within one
of these environments and next find the view in the chosen
environment most similar to the query; because of this, the
authors qualify their solution as hierarchical. However, their
method does not try to discover a hierarchy in the input data,
contrary to our solution, which besides finds this hierarchy
in an online manner, while the camera/vehicle is navigating.
The framework presented by Korrapati et al. [11], [47], where
Hierarchical Inverted Files (HIFs) are defined for indexing
images, served us as inspiration. However, they are based on
omnidirectional images and the offline BoW framework, which
makes the training step unavoidable. Recently, Chen et al. have
introduced several bio-inspired hierarchical place recognition
approaches [48], [49].

III. IMAGE DESCRIPTION

In HTMap, images are described using global and local
features. When finding similar places, global descriptors allow
us to obtain, in a fast way, a subset of the nodes in the map
whose stored images can be similar to the current one. Then,
local feature descriptors are used to select the most similar
images inside the retrieved nodes. An image received at time
t is described as It = {Gt, Ft}, where Gt is the computed
global descriptor and Ft is the set of local features found in
the image. In this section, the techniques used for computing
Gt and Ft are detailed.

A. Global Feature Description

As a global representation, we use the Pyramid of His-
tograms of Orientation Gradients (PHOG) global descrip-
tor [21], which was originally developed for image classifi-
cation. Despite the fact that it is less effective for an accurate
place recognition, this simple descriptor can help when sum-
marizing image information inside a node, as will be shown
later. PHOG represents an image by its local shape and the
spatial layout of this shape. The local shape is represented by a
histogram of edge orientations (HOG) [50] computed from an
image subregion quantized into K bins, where the contribution
of each edge is weighted according to its magnitude. The
spatial layout is represented by L levels, dividing the image
into a sequence of increasingly finer spatial grids by repeatedly
doubling the number of divisions in each direction. The final
PHOG descriptor is created by concatenating all the HOG
descriptors and normalizing them to sum to unity. An example
of PHOG computation is illustrated in Fig. 1. In our implemen-
tation, we have experimented with these parameters in order
to maximize the recall maintaining 100% of precision, as will
be shown in section VI. We set K = 60 and L = 3, which
generates a descriptor of 1260 components. These values have
been used in all experiments. Formally, the global descriptor

Figure 1. Example of PHOG descriptor computation: from left to right, grids
for levels 0, 1 and 2; the final descriptor consists of a weighted concatenation
of the histograms of oriented gradients for each grid cell.

Figure 2. Histograms for the number of descriptors that contain a certain
number of bits set to zero, for the St. Lucia dataset. The left histogram
corresponds to location 18 once 25%, 50%, 75% and 100% of images have
been processed. The right histogram is for all locations at the same percentages
of the mapping process. (Bars have been removed to improve the visualization
of the plots. In the right legend box, L stands for location.)

is defined as Gt = {gt0, gt1, . . . , gt1259}. According to the
original paper, the χ2 distance exhibits a superior performance
when comparing two of these descriptors. Given two PHOG
descriptors, Gi and Gj , we define distance dg(Gi, Gj) as:

dg(Gi, Gj) =

1259∑
k=0

(gik − g
j
k)

2

gik + gjk
. (1)

B. Local Feature Description

For each image, we also compute a collection of FAST
corners [51] described each by an LDB binary descriptor [18].
This allows us to take advantage of their fast computation
times and reduced storage needs, in front of classic approaches
such as SIFT [12] or SURF [13]. LDB is a highly efficient,
robust and distinctive binary descriptor, which performs in,
basically, three steps. First, LDB captures the internal patterns
of each image patch using a set of binary tests, comparing
the average intensity and first-order gradients. Second, the
structure is computed at different spatial granularities. Third,
the algorithm selects a subset of the bits according to their
distinctiveness to build the final binary descriptor.

The set of LDB descriptors of the n features found at image
It is defined as Ft = {f t0, f t1, . . . , f tn−1}. Their similarity is
calculated in accordance to the Hamming distance df (f ip, f

j
q )

between two binary descriptors f ip and f iq from, respectively,
sets Fi and Fj , i.e. df (f ip, f

j
q ) = bitsum(f ip ⊕ f jq ).

IV. MAP REPRESENTATION

Our map representation is based on the observation that the
appearance of images taken from the same scene should look
similar to one another. These images are grouped together in
what we call locations. Hence, a location is a group of images
of the environment that present some visual similarity. In order
to manage the relationships between these locations, the envi-
ronment is modeled by means of an undirected graph, whose
nodes represent the locations in the map and edges represent
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connectivities, i.e. traversability, between them. In formal
terms, given I = {I0, I1, . . . , It−1} as the input sequence of
images received up to time t, we define our topological map at
t as Mt = (ω, γ), where ω is the set of existing locations and
γ represents a set of edges which encodes the relationships
between locations. The set of locations ω is defined as:

ω = {`0, `1, . . . , `c−1} , (2)

where `i represents the location i and c is the total number of
locations. Particularly, the i-th location is defined as the tuple:

`i = (ζi, ρi, βi) , (3)

where ζi = {ι0, ι1, . . . , ιm−1} are the indices of the m
images associated to the location, ρi is the representative
of the location and βi is an index of local features built
from the images belonging to the location, which is used to
retrieve images according to the local binary features found
in the current image. When a new image It is added to the
location `i, its index is added to ζi, and ρi and βi are updated
accordingly.

Given a query image, ρi is used to rapidly obtain a measure
of similarity between It and the location, which is a key step
in our hierarchical loop closure algorithm. This representative
ρi is computed as the average PHOG descriptor of the images
inside the location. Hence, it can be defined as ρi = {ri0,
ri1, . . . , r

i
1259}, where each component is computed as:

rij =

m−1∑
k=0

gιkj

m
. (4)

After retrieving the most similar locations, we employ local
binary features to obtain similar images in these locations.
In order to avoid image-to-image comparisons, we make use
of the index of local features βi. This index, inspired by
image retrieval methods, is an efficient way to determine the
similarity between the current image and the images stored in
the location. Image retrieval methods developed recently are
based on the BoW approach [10], where usually the dictionary
is built offline. Furthermore, most of these BoW approaches
are usually based on real-valued descriptors [12], [13] and
is less common to find binary solutions [9]. To deal with
the problems that these approaches present, in this work,
we employ a method for computing a vocabulary of binary
features that can be built online, avoiding thus a training
phase. This method was formerly presented in [19] and so the
interested reader is referred to the original paper for further
details. A brief overview is provided next.

Our method is based on an incremental visual dictio-
nary based on a modified version of Muja and Lowe’s ap-
proach [52]. The dictionary is combined with an inverted
index, which contains, for each word, a list of images where it
was found. Since our approach relies on an incremental visual
dictionary based on binary features, an updating policy for
combining binary descriptors is needed. Averaging each com-
ponent of the vector is an option for real-valued descriptors,
but it is not for the binary case. We propose to use a bitwise
AND operation. Formally, being B a binary descriptor:

Btwi
= Bt−1wi

∧Bq , (5)

where Bt−1wi
is the binary descriptor of the word wi stored in

the dictionary at time t − 1, Bq is the query descriptor and
Btwi

is the merged descriptor for word wi at time t. Given
the way how we merge descriptors, and to determine whether
this process does not end up into degenerated descriptors (e.g.
almost all bits set to zero), we ran an experiment consisting
in processing the longest sequence used in this work (see
Table II) and then we analyse the final descriptors found in
the indices. Note that this sequence produces more than 256-
bit 10M descriptors, distributed among the binary indices of
258 locations. The results of the analysis can be found in
Fig. 2, which shows histograms for the number of zeros in
the different descriptors, i.e. bin k of the histogram accounts
for the descriptors whose number of zeros are k. The plots
show the histograms at a certain percentage of the mapping
process for location 18 (left) and for all locations (right). As
can be seen, the distribution of the number of zeros in the
descriptors does not change relevantly along the processing
of the sequence, despite the several merging operations per-
formed between descriptors as loop closures are found.

The index is initially built using the descriptors of the
first image of the location. When a new image needs to be
added to the index, their descriptors are searched in the index.
Given a query binary descriptor, we search for the two nearest
neighbours traversing the tree from the root to the leafs and
selecting at each level the node that minimizes the Hamming
distance. Using these two neighbours, we apply the ratio
test [12] in order to determine if both descriptors represent
the same visual feature. If positive, the query descriptor and
the visual word are merged using (5) and replaced in the
dictionary. Otherwise, the query descriptor is considered a new
feature and is added to the index as a new visual word. In
both cases, the inverted index is updated accordingly, adding
a reference to the current image in the list corresponding to the
modified or added word. Given the features of a query image
as input, the visual index returns an ordered list of images
according to a scoring process.

Figure 3 illustrates an example of a map generated using our
approach. Note that our hierarchical decomposition somehow
favours long-term tasks. On the one hand, it speeds up the
loop closure detection process by preventing an image search
in the full map. On the other hand, locations can be serialized
on disk and loaded on demand if the location is selected as a
candidate, to save memory space. Only the representative of
the location ρi needs to be kept in memory for it to be available
for the first step of the loop closure detection algorithm.

V. TOPOLOGICAL MAPPING FRAMEWORK

A. Algorithm Overview
HTMap builds a visual representation of the environment

using a monocular camera, and localizes the robot within
this map. Therefore, at time stamp t − 1, there exists an
active location `a ∈ ω, which can be defined as the current
topological position of the robot within the map according
to the received images up to time t − 1. Given the next
image It, our mapping algorithm tries to determine if there
exist a similar location in the map or, otherwise, this image
corresponds to an unexplored area of the environment.
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Figure 3. Example of a hierarchical map generated by our approach. The
map comprises four locations `0, `1, `2 and `3 and a loop between `0 and
`2. Besides the corresponding set of images ζi, each location i contains a
representative ρi and an index of local features βi.

Figure 4. Overview of HTMap.

Figure 4 and Algorithm 1 illustrate our topological mapping
approach. An initial location `0, marked as active, is created
including only the first input image I0. For each new image It,
global Gt and local Ft descriptors are computed as explained
in section III. These descriptors are then used in the loop
closure step to determine if this image comes from an already
known place. If positive and the retrieved location is different
to the current active location `a, the locations are linked in the
graph γ in order to register a relationship between these places
and `a is updated to point to the loop location. Otherwise,
a decision about whether this image belongs to `a or else
is a new place must be made. If it can be considered as
a new place, a location is added to the map, linked to the
current location `a and marked as active. In the last step, It
is associated to `a, and ρa and βa are updated by means of,
respectively, Gt and Ft.

The following sections detail the policy used to conclude
whether an image belongs to the current active location or is
a new location, as well as the loop closure detection algorithm.

B. New Location Policy

Once the current image has been found not to close a loop
with any existing location, the dissimilarity between `a and
It is evaluated in order to check if the image comes from the
scene represented by the current location, i.e. if dg(ρa, Gt) <
τnn, then It is associated to `a, being ρa the representative
of the node and Gt the global descriptor of It. Threshold τnn
plays a key role with regard to the sparsity of the map: the
higher it is, the lower the number of nodes, but more images
are associated to each location. We evaluate the quality and
accuracy of the visual maps according to τnn in section VI.

Algorithm 1 Topological Mapping
1: procedure TOPOLOGICAL_MAPPING
2: while there are images do
3: It = get_image()
4: Gt = global_description(It) . PHOG extraction
5: Ft = local_description(It) . FAST and LDB
6: if loop_closure(Gt, Ft, Mt) then
7: `c = get_loop_closure_location()
8: link(`a, `c, Mt)
9: `a = `c . Updates the active location

10: else
11: if is_new_location(Gt, `a) then
12: `n = create_new_location(Mt)
13: link(`a, `n, Mt)
14: `a = `n . Updates the active location
15: else
16: do_nothing() . The image belongs to `a
17: end if
18: end if
19: add_img_to_loc(It, `a) . ρa and βa are updated
20: end while
21: end procedure

Figure 5. Hierarchical loop closure detection algorithm.

C. Hierarchical Loop Closure Detection

Our loop closure detection module is based on a discrete
Bayes filter, which estimates the probability that the current
image closes a loop with a previously seen image associated
to an existing location of the map. As on other solutions, the
Bayes filter allows us to deal with noisy measurements and

Algorithm 2 Hierarchical Loop Closure Detection
1: procedure LOOP_CLOSURE(Gt, Ft,Mt)
2: add_hypotheses(t) . Add valid hypotheses at time t
3: enqueue_image(Gt, Ft)
4: bayes_filter_predict()
5: likelihood = compute_likelihood(Gt, Ft,Mt)
6: bayes_filter_update(likelihood)
7: c = get_best_candidate()
8: ninliers = epipolarGeometry(Ft, Fc)
9: if ninliers > τep then

10: return true . Loop closure found
11: else
12: return false . No loop closure found
13: end if
14: end procedure
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ensures temporal coherency between consecutive predictions,
integrating past estimations over time.

Our approach is outlined in Fig. 5 and Algorithm 2. In
order to avoid false loop closure detections with immediately
previous images, the latter are not directly included as loop
closure hypotheses as soon as they arrive. Instead of this, a
buffer is used to store the most recent p images, delaying
their publication as loop closure candidates. Consequently, the
first step is to release the candidates that could be considered
as possible loop closures at the current time step. After that,
the current image is enqueued in the buffer and, then, the
computation of the likelihood and the Bayes filter update steps
are performed. An epipolarity analysis between the current
image It and the image with the highest probability Ic is
performed in order to validate if they can come from the same
scene after a camera rotation and/or translation. Matchings that
do not fulfill the epipolar constraint are discarded by means of
RANSAC. If the number of inliers is above a threshold τep, the
loop closure hypothesis is accepted; otherwise, it is definitely
rejected. Further details of the Bayes filter are detailed next.

1) Bayes filter derivation: The Bayes filter described below
is based on our previous approach [38] after being adapted to
be used within the hierarchical approach, since our map repre-
sentation is very useful during the likelihood computation. Let
Lti denote the event that image It closes a loop with image Ii,
which is associated to some location `j at time t, where i < t.
We also denote Ot = {Gt, Ft} as the observation at time t,
which comprises the global and local descriptions computed
for the current image It. Using these definitions, we want to
find the previous image IC whose index C satisfies:

C = argmax
i=0,...,t−p

{P
(
Lti|O0:t

)
} , (6)

where P (Lti|O0:t) is the full posterior probability at time t
given all previous observations up to time t. As in [7] and as
explained previously in this work, the most recent p images are
not included as hypotheses in the computation of the posterior.
This parameter p delays the publication of hypotheses and
needs to be set according to the frame rate and the velocity
of the camera. Separating the current observation from the
previous ones, the posterior can be rewritten as:

P
(
Lti|O0:t

)
= P

(
Lti|Ot, O0:t−1

)
, (7)

and then, using conditional probability properties, we can
isolate our final goal to obtain:

P
(
Lti|Ot, O0:t−1

)
=
P (Ot|Lti, O0:t−1)P (Lti|O0:t−1)

P (Ot|O0:t−1)
, (8)

where P (Ot|O0:t−1) can be seen as a normalizing factor since
its computation does not depend on Lti. Under this premise and
the Markov assumption, the posterior is defined as:

P
(
Lti|O0:t

)
= ηP

(
Ot|Lti

)
P
(
Lti|O0:t−1

)
, (9)

where η is the normalizing factor, P (Ot|Lti) is an observation
model and P (Lti|O0:t−1) is the prior, computed after a predic-
tion step. The conditional probability P (Ot|Lti) is considered
as a likelihood function L (Lti|Ot), computed as explained
in section V-C3. Notice that the Markov assumption, which

has been successfully employed in other works, e.g. [7], is a
simple approximation that allows us to avoid the computation
of several high-order conditional dependencies between obser-
vations. Decomposing the right side of (9) using the Law of
Total Probability, the full posterior can be written as:

P
(
Lti|O0:t

)
= ηP

(
Ot|Lti

) t−p∑
j=0

P
(
Lti|Lt−1j

)
P
(
Lt−1j |O0:t−1

)
,

(10)
where P

(
Lt−1j |O0:t−1

)
is the posterior distribution computed

at the previous time instant and P
(
Lti|L

t−1
j

)
is the transition

model. The observation model P (Ot|Lti) is computed in two
consecutive steps according to the observation pair Ot and
using conditional probability properties:

P
(
Ot|Lti

)
= P

(
Gt, Ft|Lti

)
= P

(
Gt|Lti

)
P
(
Ft|Lti, Gt

)
,

(11)
where P (Gt|Lti) results from the similarity between Gt and
the existing locations in the map, and P (Ft|Lti, Gt) is com-
puted searching similar images inside the retrieved locations.

2) Transition model: The loop closure probability at time
t is predicted from the previous posterior according to an
evolution model. The probability of loop closure with an image
Ij at time t − 1 is diffused over its neighbours following
a discretized Gaussian-like function centered at j. In more
detail, 90% of the total probability is distributed among j
and exactly eight of its neighbours. The remaining 10% is
shared uniformly across the rest of loop closure hypotheses
according to 0.1

max{0,t−p−9}+1 . This implies that there is always
a small probability of jumping between hypotheses far away
in time, improving the sensitivity of the filter when the robot
revisits old places. Note that, unlike our previous version of
the filter [38], the Gaussian comprises eight frames instead
of four. This increases the sensitivity of the filter since the
likelihood computation is limited to the images belonging to
the locations which are similar enough to the current image It.
Due to this reason, the use of a lower number of neighbours
leads to a lower number of correct loop detections, while a
higher number increases the execution time for this step. We
empirically found 8 as a good compromise for our purposes.

3) Observation model: The current observation Ot is in-
cluded in the filter once the prediction step has been per-
formed. To this end, we make use of our hierarchical rep-
resentation of the environment, which allows us to calculate
the likelihood L (Lti|Ot) without the need of computing the
similarity between It and all the previous images. This like-
lihood is calculated at two levels: first, global descriptors are
used to obtain the locations most similar to the current image,
what produces a similarity score for every location in the map.
Then, local feature descriptors are searched only in the feature
indices whose score is above a threshold, in order to obtain a
similarity score regarding the images stored at those locations.

The goal of the first step is to obtain places in the map with
a similar appearance to the current image It. To this end, the
distance dg(ρi, Gt) between the global descriptor of the image
Gt and the representative global feature of each location ρi, is
computed. Next, these distances are converted into a similarity
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Algorithm 3 Likelihood Computation
1: procedure COMPUTE_LIKELIHOOD(Gt, Ft,Mt)
2: dg = []
3: for each location i in ω do
4: dg[i] = compute_global_dist(ρi, Gt)
5: end for
6: dmax = get_max(dg)
7: dmin = get_min(dg)
8: g = [] . Global scores
9: ωc = [`a] . Similar locations to the current image

10: for each location i in ω do
11: g[i] = 1− dg [i]−dmin

dmax−dmin

12: if g[i] > τllc then
13: ωc = ωc ∪ `i
14: end if
15: end for
16: s = [] . Combined scores
17: for each location i in ωc do
18: for each image j in `i do
19: lj = sim_score(Ft, βi)
20: s[j] = g[i] · lj
21: end for
22: end for
23: return s
24: end procedure

score gi by means of equation (12):

gi = 1−
dg(ρi, Gt)− dming

dmaxg − dming

, (12)

where dming and dmaxg are, respectively, the minimum and
the maximum distances resulting for It. Despite that this
normalization can lead to searching in more locations than the
ones strictly necessary, the resulting images must still pass the
second step of the algorithm. In order to select the most likely
places given the current image, a set of locations ω′, whose
score is higher than a predefined threshold τllc, is defined as:

ω′ = {`i ∈ ω | gi > τllc} , (13)

where ω was defined in Eq. 2. Note that, despite the number
of locations increases as more images are processed, the time
required to obtain location candidates is very low even with a
high number of nodes, as will be seen in section VI. This
is because the distance between PHOG descriptors can be
calculated very fast. Therefore, we select locations with gi >
τllc irrespective of the number of candidates, which achieves
better performance. The final set of candidate locations ωc is
obtained combining ω′ with the currently active location `a:

ωc = ω′ ∪ `a . (14)

The intuition behind the inclusion of the currently active
location is that, if a loop was detected at the previous time
with an image associated to `a, it is possible that the current
image also closes a loop with an image in `a, due to the visual
similarity between consecutive images. Hence, we update the
likelihood of the images associated to `a irrespective of the
score gi resulting for the images belonging to `a.

Table I
DEFAULT PARAMETERS FOR HTMAP EXECUTION

Grid size 4×4 Nearest neighbour ratio 0.8
Max. keypoints per image 1000 τnn 0.15

FAST threshold 10 τllc 0.65
LDB descriptor length 32 bytes

In a second step, image similarities are computed in order
to find the most likely images in the selected locations. To this
end, local binary descriptors of the current image are searched
in the feature indices of the retrieved locations ωc, and a
similarity score ℘j is computed for every image j associated
to each candidate location i:

℘j = sim_score (Ft, βi) ,∀Ij ∈ `i,∀`i ∈ ωc , (15)

which is a score based on the Term Frequency Inverse Doc-
ument Frequency (TF-IDF) weighting factor [53]. Being I0:k
the set of the images added to the index βi up to the current
time t, the TF-IDF value %twr

computed given the word wr
and the image It is defined as:

%twr
=
ntwr

Nt
× log

k − 1

nwr

, (16)

where ntwr
is the number of occurrences of the word wr in

image It, Nt is the total number of features found in image
It, k−1 coincides with the cardinal of set I0:k, and nwr

is the
total number of images in I0:k containing the word wr. This
value is accumulated to the corresponding score according to:

℘j = ℘j + %twr
, (17)

being j the index of the image extracted from the inverted
index. The computation of the scores finishes when all descrip-
tors in Ft have been processed. Next, a combined similarity
score sij for image j is calculated and stored at location i:

sij = gi · ℘j . (18)

A likelihood is then calculated according to the following rule
(similarly to [7]):

L
(
Lti|Ot

)
=


sij − sσ
sµ

if sij ≥ sµ + sσ

1 otherwise
, (19)

being, respectively, sµ and sσ the mean and the standard
deviation of the set of scores. Notice that, by means of
(19), given the current observation Ot, only the most likely
images update their posterior. The likelihood computation is
formally stated in Algorithm 3. To finish, after incorporating
the observation into our filter, the full posterior is normalized
in order to obtain the probability P (Ot|Lti).

VI. EXPERIMENTAL RESULTS

In this section, we evaluate HTMap from different points of
view. An Intel Core i3 (2.27Ghz) / 8 GB RAM computer was
used in all experiments. HTMap was configured by default
using the parameters indicated in Table I.
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Table II
DATASETS USED TO VALIDATE HTMAP

Name # Imgs Size (px) Rate (hz) Dist (km)

City Center [4] 1237 1280×480 0.5 2.0
New College [4] 1073 1280×480 0.5 1.9
KITTI 00 [54] 4541 1241×376 10 3.7
KITTI 05 [54] 2761 1226×370 10 2.2
KITTI 06 [54] 1101 1226×370 10 1.2
St. Lucia [55] 21815 640×480 15 17.6

A. Datasets

The evaluation has been performed using several community
datasets, which correspond to different operating conditions.
The City Center and the New College datasets, originally
obtained for the evaluation of FAB-MAP [4], consist of,
respectively, 1237 and 1073 pairs of images of size 640×480
taken by two cameras (one pointing left and one pointing
right), mounted on a robot while it travels through the environ-
ment. Since our approach has been developed to be used with
monocular cameras, we merged left and right frames resulting
into images of size 1280×480. The City Center dataset was
recorded to validate the ability of a system for matching im-
ages in the presence of scene changes, while the interest of the
New College dataset is its high perceptual aliasing conditions.
We also use several sequences from the KITTI suite [54]. The
KITTI odometry benchmark consist of 22 outdoor sequences,
with more than 40k images covering 39.2 km. Among these
22 sequences, there are 12 that contain loop closures. We
employ sequences 00, 05 and 06 as a representative set of
the benchmark. Finally, we validate HTMap against the St.
Lucia 19-08-09 08:45 sequence [55], which comprises 17.6
km and 21815 images in a highly dynamic environment. The
details of each dataset are summarized in Table II.

B. Loop Closure Detection

We first evaluate the performance of our hierarchical loop
closure approach for recognizing previously seen places. In
order to obtain performance measures, each dataset is provided
with a ground truth, which indicates, for each image in the
sequence, which other images can be considered as a loop.
Since originally the KITTI sequences did not include a specific
ground truth for loop closure detection, we use the ones
provided by Arroyo et al. [28]. Each dataset is also provided
with either a pose file or a file with GPS measurements,
which are used to plot the different paths and hence visualize
navigation and mapping results. For the St. Lucia dataset, this
file was also used to generate the ground truth, using 10 meters
as the threshold for placing two images in the same location.

The assessment against the ground truths is performed
counting, for each sequence, the number of true positives (TP),
true negatives (TN), false positives (FP) and false negatives
(FN), where positive is meant for detection of loop closure.
Then, precision-recall metrics are calculated:

• Precision is the ratio between real loop closures and the
total amount of loop closures detected (TP/(TP+FP )).

• Recall is the ratio between real loop closures and the
total amount of loop closures existing in the sequence
(TP/(TP + FN)).

In our validation tests, we are particularly interested in the
maximum recall that can be achieved for a precision of 100%,
which implies no false positive detections in any case. The
reason is that, in mapping tasks, a false positive can induce
the algorithm to produce inconsistent maps and, therefore,
avoiding these false positives becomes essential.

Since HTMap is based on a hierarchical combination of both
BoW and global schemes, we want to verify its performance
in comparison with two solutions of each of these paradigms
executed alone. Therefore, we compare with FAB-MAP 2.0 [6]
and SeqSLAM [29], which can be considered as state-of-the-
art approaches of, respectively, each paradigm. The former
has been evaluated using the binaries provided by the authors,
while for the latter we have used OpenSeqSLAM [56].

Regarding FAB-MAP, it was configured with the default
parameters and we ran it against all datasets using the outdoor
vocabulary provided by the authors. Its output is a matrix, the
n-th row of which corresponds to the probability distribution
over previously seen places due to the n-th image. In this
matrix, the main diagonal corresponds to the probability
that the image comes from a new place. Since we do not
take into account this case and we want to avoid the false
detection of loop closures with recent frames, we rectify this
matrix by removing the most recent probabilities for each row
and normalizing the resulting distribution. A loop closure is
detected if the probability is above a threshold τFM .

OpenSeqSLAM has been also configured with the default
parameters, except the temporal length of the image sequences
(ds) which is, according to the authors, the most influential pa-
rameter of the algorithm. Longer sequence lengths usually per-
form better in terms of precision-recall, but, in some datasets,
they can result into the opposite behaviour because of the
absence of sequences of that length, specially in environments
with frequent turns. Since we want to increase the performance
of each approach, this parameter was experimentally set to 30,
what maximized the recall in all datasets.

The precision–recall curves for each dataset are shown in
Fig 6. In all cases, the curves result from modifying τep in
HTMap, τFM in FAB-MAP 2.0 and the loop closure accep-
tance threshold in SeqSLAM. For an easier understanding of
the curves, best results at 100% of precision are also shown
in Table III. As can be observed, the area under the curve
(AUC) of HTMap is higher than the corresponding curves
for the other solutions, outperforming them in all datasets.
According to our experiments, SeqSLAM is usually able to
obtain higher recall at 100% of precision than FAB-MAP 2.0,
except for New College, where results are very similar. The
performance of our approach is specially high for KITTI 00
and KITTI 06, where a recall above 90% results for a 100%
of precision. The maximum recalls for the other datasets are
79.68% (City Center), 73.60% (New College), 75.88% (KITTI
05) and 70.11% (St. Lucia), which are very high in comparison
with the other solutions. We believe that this increase in
performance is due to our divide-and-conquer approach, which
decreases the dispersion of loop closures between candidates
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Figure 6. Precision-recall curves for each dataset using HTMap, FAB-MAP 2.0 and SeqSLAM.

(a) City Center (b) New College (c) KITTI 00 (d) KITTI 05 (e) KITTI 06 (f) St. Lucia
Figure 7. Appearance-based loop closure results for each dataset. Image positions are plotted as black dots. Wherever an image closes a loop with another
image, both are labelled with a red dot and linked with a green line. These green lines highlight the presence of false positives, if any. Top row shows the
results of HTMap, while the bottom row shows the ideal path that should be obtained if all the loops present in the dataset were correctly detected.

by means of a previous step for selecting similar areas of the
environment. Notice that these results also show the usefulness
of PHOG for this kind of tasks.

Table III also shows the value of τep required to achieve the
respective maximum precision-recall. Given these values, we
want to analyse the effect of setting this parameter to a fixed
value in terms of recall. To do that, we process the datasets for
τep = 140, which ensures 100% of precision in all datasets,
and then we evaluate the resulting recall. As can be observed,
the recall decreases a bit in most datasets, since the number of

positives resulting from the algorithm also decreases. Despite
this, HTMap is able to achieve, on average, 77.80% of recall.

After the results presented in Table III, the top row of Fig. 7
shows the loops detected by HTMap at 100% of precision for
each dataset. No false positives were detected in any case. In
the figure, the positions available for each image of the dataset
are used to spatially plot the images using black dots. When
a loop closure is detected, images representing this loop are
labelled in red and are linked with a green line. The bottom
row of the figure shows the corresponding ground truths, i.e.
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Table III
RESULTS AT 100% OF PRECISION FOR FAB-MAP 2.0, SEQSLAM AND

HTMAP. RECALLS FOR τep = 140 ARE ALSO SHOWN.

FABMAPv2 SeqSLAM HTMap

Dataset Pr Re Pr Re Pr Re τep Re(140)

City Center 100 38.50 100 68.98 100 79.68 75 74.25
New College 100 51.91 100 49.39 100 73.60 125 67.80

KITTI 00 100 49.21 100 67.04 100 90.24 80 88.85
KITTI 05 100 32.15 100 41.37 100 75.88 140 75.88
KITTI 06 100 55.34 100 64.68 100 97.03 125 94.76
St. Lucia 100 18.54 100 41.56 100 70.11 75 65.25

Average Recall (τep = 140) 77.80

the ideal path that should be obtained in case the approach
detects all the loops of the dataset. Note that most part of
the existing loops were detected by HTMap, specially in the
KITTI and St. Lucia datasets.

C. Topological Mapping

The same sequences used in the previous experiments were
employed to validate HTMap as for mapping. To this end, the
topological maps obtained at 100% of precision are shown in
Fig 8. For each dataset, a random color has been assigned to
each map location and thus all images associated to the same
node are labelled using the same color. We want to check
whether images are tagged with the same color when revisiting
a place. As can be seen, this is true in most cases, and it is
specially evident in the City Center dataset, where a large loop
is found. In this case, despite the map contains few locations,
HTMap does not get confused and images corresponding to
already visited places are assigned to the correct node. The
total number of locations for each dataset resulted to be 18
(City Center), 86 (New College), 32 (KITTI 00), 19 (KITTI
05), 20 (KITTI 06) and 258 (St. Lucia).

D. Sparsity

The number of locations of a map with regard to the number
of images is defined as its sparsity [11]. The lower the number
of locations, the higher the sparsity, since more images are
assigned to the same place. It is obvious that accurate loop
closure detection relies on an adequate sparsity level.

In the first level of our loop closure approach, more location
candidates are taken into account, what can induce false loop
detections. Moreover, a larger sparsity makes the binary index
of each location contain more visual words, sharing the scores
among more loop closure candidate images. A good mapping
technique must balance the number of locations and the ability
of detecting previously seen places. In this section, we want
to evaluate the effect of sparsity in HTMap performance.

The parameter with a major influence on the sparsity of
the map, in HTMap, is τnn: the higher the value of τnn, the
lower the number of locations (see section V-B). Since we are
interested in avoiding false positives, we fix the parameter τep
to 150, which, as shown in Table III, is enough to ensure
100% of precision in all datasets. Then, we execute our
approach varying τnn and the number of locations and recalls
are observed. This experiment has been performed over the
City Center and the New College datasets, since they have
approximately the same length and have been taken at the

Table IV
AVERAGE COMPUTATIONAL TIMES (MS) OF HTMAP IN ALL DATASETS.

CC NC K00 K05 K06 StL

DESC
PHOG 12.6 11.9 10.5 10.4 9.5 7.6
FAST 39.2 38.4 30.5 30.4 28.5 19.4
LDB 2.3 2.8 1.9 1.8 1.5 1.4

LC

LLC 2.2 2.4 2.5 2.8 2.9 1.6
ILC 32.2 16.2 75.6 40.2 20.1 179.6

PRED 0.01 0.01 0.02 0.02 0.01 0.1
UPD 0.1 0.1 0.5 0.3 0.1 2.6
EA 3.6 5.1 3.6 3.6 3.8 3.5

Total 92.2 76.9 125.1 89.5 66.4 215.8
FABMAPv2 293.0 244.2 237.4 233.8 188.2 264.4

SeqSLAM 128.5 123.1 180.7 131.5 74.7 291.1

same frame rate. This is to ensure that the number of generated
locations is independent of the length of the sequence. Note
that using a low value of τep can lead to a higher recall, but in
this case we are only interested in the relation existing between
the number of locations and the recall produced by HTMap
under these conditions. The results are shown in Fig. 9.

As can be seen, a high number of locations in HTMap does
not imply better performance: from approximately 100 loca-
tions, the recall starts to decrease for both datasets. A number
of locations between 10 and 80 are enough to guarantee the
best recall values, being the recall more or less stable in this
interval (≈ 0.70 for City Center and ≈ 0.65 for New College).
This is an interesting point, taking into account that having
more locations in the map could imply higher computational
load during the first step of our loop closure approach, where
the most likely locations are retrieved. Note that minimum
sparsity is equivalent to perform loop closure detection at
exclusively the image level. This proves that our grouping
approach helps during the detection of previously seen places
and validates the ability of the PHOG global descriptor to
summarize the visual information that characterizes a place.

E. Computational Times

In this section, we evaluate the performance of HTMap in
terms of computational time. To this end, we executed our
approach over the datasets using the parameters that gave us
the maximum recall in the previous experiments and, then, the
average execution time of the different parts of the algorithm
were measured. The results are shown in Fig. 10, where the
average time per image is shown in groups of 100 images for
enhancing the visualization. The times are also summarized
in Table IV, where PHOG is the time needed to perform the
global description of the image, FAST includes the keypoint
detection and the selection of the best 1000 corners, and
LDB is the time needed to compute the binary description
of these corners. Regarding the loop closure detection times,
LLC refers to the time required to perform the first step of our
hierarchical loop closure algorithm, ILC involves the compu-
tation of the second step of HTMap, PRED is the time needed
to make a prediction and UPD is the time needed to update
the filter using the computed likelihood. Finally, EA includes
matching features and the computation of the fundamental
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(a) City Center (b) New College (c) KITTI 00 (d) KITTI 05 (e) KITTI 06 (f) St. Lucia
Figure 8. Topological maps generated at 100% of precision for each dataset. Images belonging to the same location are labelled with the same color. The
total number of generated locations are, respectively: 18, 86, 32, 19, 20 and 258.

Figure 9. Sparsity analysis. Recall of HTMap according to the number of
locations at 100% of precision and τep set to 150 for City Center and New
College datasets.

matrix. As can be observed, times are substantially short.
Regarding image description, the computation of PHOG is
even faster than detecting features using FAST and describing
them using LDB. The total average time needed for describing
an image is much faster than using SIFT or SURF [6]. The
highest execution time corresponds to the image likelihood
computation. This time increases with the number of nodes,
since more locations must be searched. This effect could be
reduced increasing τllc for selecting less location candidates
or even limiting the number of locations to a fixed number,
which would reduce the recall, but could be enough depending
on the environment. In this case, we preferred to select all
locations with a score higher than τllc to maximize the recall.
Nonetheless, the maximum average time measured is 179.6
ms, which can be considered as a reasonable result given
the number of images processed. The computation of the
location likelihood is very fast despite the increment of the
number of nodes in the map. Unlike FAB-MAP 2.0, where
the likelihood computation time is roughly constant due to the
use of a static visual dictionary, our approach makes use of
an online visual dictionary, which can increase the likelihood
computation time, but, as previously explained, provides other
advantages such as the avoidance of the training stage and a
vocabulary specifically adapted to the operating environment.
According to our experiments, HTMap can process an image
in 215.8 ms on average in the largest dataset.

In order to compare HTMap with FAB-MAP 2.0 and
SeqSLAM in terms of computational times, we ran the binaries
provided by the authors on the same machine as HTMap,
adapting the code to measure the average processing time
per image. From the shown in Table IV, we can observe
that HTMap outperforms the other solutions also in terms
of average computational time. Note that, while HTMap and

Table V
COMPARISON BETWEEN SINGLE AND HIERARCHICAL APPROACHES

Single Hierarchical
Dataset Pr Re Time (ms) Pr Re Time (ms)

City Center 100 88.24 94.1 100 79.68 92.2
New College 100 53.15 83.4 100 73.60 76.9

KITTI 00 100 78.73 242.3 100 90.24 125.1
KITTI 05 100 62.58 145.14 100 75.88 89.5
KITTI 06 100 84.76 78.15 100 97.03 66.4
St. Lucia 100 64.32 465.1 100 70.11 215.8

SeqSLAM times increase with the number of images, FAB-
MAP 2.0 presents a more stable behavior. The reason is that
the number of visual words in the dictionary of FAB-MAP
2.0 is predefined, and so no insertion/removal overhead takes
place during navigation. However, unlike HTMap, this implies
a training phase. A previously-built visual dictionary can be
employed to avoid the learning stage, but this usually results
into a reduction of performance in terms of precision-recall.
According to our results, SeqSLAM is faster than FAB-MAP
2.0 but not than HTMap.

To further validate the potential savings in computational
time that our PHOG-based hierarchical approach offers, we
have performed a last experiment comparing HTMap with a
solution that indexes all the images using a single online BoW
scheme [19], i.e. without using the PHOG global descriptor.
The results are shown in Table V, where the maximum preci-
sion and recall values for each approach and its corresponding
average time per image are indicated for all datasets. As can
be seen, HTMap outperforms the single approach in most part
of the datasets in terms of precision-recall. This is mainly
imputable to the dispersion of the visual words that occurs in
the index when a single approach is used. The most important
observation has to do with the average time: the higher is the
sequence, the higher is the improvement on the computational
time performance. In effect, the average processing time in the
City Center, New College and KITTI 06 datasets is similar in
both approaches. However, as the number of processed images
increases, the hierarchical approach is faster than the single
one. This is specially evident in the KITTI 00 and the St.
Lucia datasets. In the first case, HTMap needs 125.1 ms in
front of 242.3 ms, which implies an increase in performance
of 1.9x regarding the average execution time. In the second
case, HTMap requires 215.8 ms per image while the single
approach requires 465.1 ms per image, resulting in a 2.2x
performance improvement.
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Figure 10. Computational times of HTMap for all datasets. Bars represent average execution times over intervals of 100 consecutive images.

VII. CONCLUSIONS

In this paper we have introduced a new topological mapping
approach, HTMap, based on a hierarchical place recognition
technique. Instead of generating a dense map, where all the im-
ages correspond to a node in the final topology, our approach
builds a hierarchical decomposition of the environment, where
images with similar properties are grouped together to form
locations. Each location is represented by means of an average
PHOG global descriptor and an index of binary features, which
is based on a BoW scheme that can be built online. This map
representation has proved to be very useful for reducing the
search space when searching for loop closures. Then, as a key
component of our topological mapping technique, we have
also presented a hierarchical loop closure detection method.
First, given the current image, PHOG global descriptors are
used to obtain the most likely places in the map. After that,
local binary features are used to obtain the most likely images
belonging to the previously retrieved places. These scores are
combined as a likelihood in a discrete Bayes filter. We have
verified the utility of the PHOG descriptor in place recognition
tasks, showing that it can be very helpful for summarizing
the visual information that a place presents. HTMap has
been shown to compare favourably with SeqSLAM and FAB-
MAP 2.0 under the conditions imposed by several well-known
public, long-distance and dynamic datasets, also comprising
viewpoint changes and perceptual aliasing.

Referring to future research, despite the number of locations
is not a critical factor in HTMap, we will consider the
inclusion of some indexing method, such as kd-trees, for
improving even more the retrieval of the most likely locations
at the first step of the loop closure algorithm. We will also
consider the incorporation of other global descriptors, given
the good results obtained with PHOG.
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