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Abstract

Topological maps model the environment as a graph, where nodes are distinctive places of the environment and
edges indicate topological relationships between them. They represent an interesting alternative to the classic
metric maps, due to their simplicity and storage needs, what has made topological mapping and localization an
active research area. The different solutions that have been proposed during years have been designed around
several kinds of sensors. However, in the last decades, vision approaches have emerged because of the technology
improvements and the amount of useful information that a camera can provide. In this paper, we review the
main solutions presented in the last fifteen years, and classify them in accordance to the kind of image descriptor
employed. Advantages and disadvantages of each approach are thoroughly reviewed and discussed.
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1. Introduction

Mapping and localization are essential problems in mobile robotics. As a result of the mapping process, a
representative map of the environment is generated while the localization process computes the pose of the robot
within the map according to the sensor data perceived from the environment. Both processes can be used for
navigation-related tasks, such as path planning or obstacle avoidance. This is of special interest for autonomous
vehicles, which need to be able to operate without any human intervention.

Localization is sometimes solved using external structures, such as beacons at fixed, know positions or the
Global Positioning System (GPS). However, the former implies modifications in the environment and the latter is
not available in places such as indoor, underground or underwater scenarios. In these situations, the localization
must be solved internally by the robot, using its own sensor suite. Ultrasonic and laser sensors have been used
for years to this end. Nevertheless, recently there has been a significant increase in the number of visual solutions
because of the low cost of cameras and the richness of the sensor data provided.

As far as robotic mapping is concerned, two main paradigms are generally accepted: metric and topological
mapping. Metric maps represent the world as accurate as possible, maintaining a lot of information about environ-
ment details, such as distances, measures or sizes, and they are usually referenced according to a global coordinate

system. This representation is most appropriate for vehicle localization and guidance, as well as for obstacle
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avoidance. However, metric maps are more difficult to build and maintain, and are computationally demanding.
Conversely, topological maps [1H3] represent the environment in an abstract manner by means of a graph, where
nodes represent distinctive places in the environment and arcs model the relations between them. These maps are
simple and compact, scale better and require much less space to be stored than metric maps. They are not useful
for tasks with accuracy needs, for example obstacle avoidance, but simplifies others, like path planning. There
exists another paradigm, called hybrid maps, that tries to maximize the advantages and minimize the problems of
each kind of map alone for combining them in a different mapping technique.

Despite mapping and localization can be performed as independent tasks, they are closely related. In order
to build a map, the pose of the structures and the obstacles of the environment needs to be known. On the other
hand, during localization, the pose of the agent is computed against a reference map. In this case the map of
the working scenario must be available before starting the navigation, which limits the autonomy of the vehicle.
To solve this egg-and-hen problem, several approaches have been proposed where both tasks take place at the
same time, creating an incremental map of an unknown environment while localizing the robot within this map.
These techniques are generically known as Simultaneous Localization and Mapping (SLAM) [4]. In SLAM, loop
closure detection is a key challenge to overcome which entails the correct detection of previously visited places
from sensor data. This allows generating consistent maps and reducing their uncertainty. Although the dominant
theme in the literature is the metric SLAM approach, a map can be constructed satisfying much less requirements
in methods that fall into the category of topological SLAM.

In this paper we review the main approaches published in the last fifteen years with regard to topological
mapping and localization by visual means. In the related literature, you can find similar surveys, although they
rather focus more on navigation [5] and visual SLAM [6]. In our review we will mostly consider approaches
dealing with topological maps, although we will also take into account hybrid solutions that somehow consider the
topology of the environment. Other possibly related problem is that of pose-graph SLAM. Notice that algorithms
such as Olson [[7], TreeMap [8]], Square Root SAM [9], iISAM [10]], TORO [11], Sparse Pose Adjustment [12]],
iSAM2 [13]] or g2o [14], could take as input a topological map. However, pose-graph SLAM nodes represent
poses reached by the agent, and not distinctive places of the environment. Besides, the position in pose-graph
SLAM is a metric position of the vehicle and not a qualitative estimation in a discrete model of the appearance of
the world. Because of those reasons, we will consider this class of mapping algorithms out of the scope of this
survey.

Loop closure detection is an important component in topological schemes. When using vision as a source, this
problem is usually solved comparing images directly, resulting into appearance-based approaches. In this regard, a
related research field is scene categorization or visual place categorization (VPC) [[15]. The main goal of this area
is to find the class of a place in a rough manner. For instance, given the current image, the objective is to conclude
that the current place is a kitchen. Some authors create topological maps using these frameworks, forming a graph
of known places. However, VPC can be considered as a different research line and these works are also out of the
scope of this paper.

In order to perform mapping and localization tasks using vision, it is necessary to describe the acquired images
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Figure 1: Taxonomy for classifying vision-based topological schemes according to their image representation method.

and be able to compare these descriptions. Consequently, the quality of the map and the posterior localization will
directly rely on the method used for visually describing the different environment locations. For this reason, we
classify the different approaches according to the description method employed as: approaches based on global
descriptors, approaches based on local features and approaches based on Bag-Of-Words (BoW) schemes. We also
identify that these methods can be combined. See Fig. [T|for a graphical description of this classification.

Note that BoW schemes, where the local features extracted from an image are quantized according to a set of
representative visual words, are mainly used in combination with an inverted file to index visual information in an
efficient way for fast image retrieval, and could be regarded as a subcategory within the local features approaches.
Another possibility is to consider that, in these approaches, the image representation changes from the set of local
features to a histogram of occurrences of each visual word in the image, reducing the descriptor to a vector of
integers. In this survey, and to make the paper more understandable, we have decided to adopt the second view,
keep the BoW category and, hence, classify the BoW-related papers apart from the local features-related papers.

Given the taxonomy of the problem, the rest of the paper is organized as follows: Section [2]enumerates funda-
mental works based on global descriptors; approaches based on local features are presented in Section[3} Section ]
introduces main solutions built under BoW schemes; Section [5]enumerates principal works that represent the im-
age as a combination of the other ones; Section [6] presents a comparison between some approaches; and Section [7]

concludes the report, including a discussion and proposing some open research lines.



75

80

85

Table 1: Summary of global image descriptors.

Name References
Principal Components [21} 122]
Colour Histograms 23]
Gradient Orientation Histograms [24]
WGOH 23]
WGII (26]
OACH [27]
Receptive Field Histograms [28]
Gist [29]
Omni-Gist [30]
BRIEF-Gist [131]
Spherical Harmonics [32]
Fingerprints [33]
FACT [134]
DP-FACT [135]]
Fourier Signatures [136}137]]
Colour Segmented Images [38]
Scanline Intensity Profile [39]
Normalized Patches [40]
2D Haar Wavelet Decomposition [41)142]]
WI-SURF [43]
WI-SIFT (43]
DIRD [44]
OFM [45]
OFSC [45]

2. Methods based on global descriptors

Global descriptors describe the image in a holistic manner, using the full image as input to the process. These
descriptors are normally very fast to compute, what simplifies the matching process between images and reduces
the computational needs of mapping and localization tasks. This kind of descriptor has been used in several
applications comprising scene classification, giving good results in all cases.

A summary of global descriptors used in some approaches is shown in Table [I] There exist other global
descriptors that have not been included in the table because, to the best of our knowledge, they have not been
employed in topological mapping and localization solutions, although they could be interesting for the reader.
Examples of them include descriptors for scene categorization (Census Transform Histogram (CENTRIST) [[L6],
Pyramid Histogram of Oriented Gradients (PHOG) [[17], Histogram of Oriented Uniform Patterns (HOUP) [18]],
Multi-Resolution BoW [[19])) and for pedestrian detection (Histogram of Oriented Gradients (HOG) [20]).

Many authors have proposed different solutions for topological mapping and localization using global image
representations, which are summarized in Table[2] This table indicates, for each solution, the imaging configuration
adopted, whether the resulting map is a pure topological map or otherwise is a hybrid representation, the intended

tasks, the environments where the approach was assessed and the image descriptor used.
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2.1. Histograms

Histograms provide a compact way of representing an image and have been used for topological mapping and
localization in different forms. An example of that is the work of Ulrich and Nourbakhsh [23]]. They proposed a
topological localization method based on appearance. Each image is represented by six one-dimensional colour
histograms, three extracted from the HLS colour space and other three extracted from the RGB colour space.
Given a query image, they retrieved reference images from the map using a nearest neighbour learning scheme
in their topological map. The Jeffrey divergence was used as a distance measure between two histograms. They
assessed their system in several environments, obtaining at least 87.5% of correctly classified images in all of them.
Werner et al. [46]] also employed colour histograms combined with a Bayes filter for providing a topological SLAM
solution. They used the Hausdorff distance to compare the topological map and the visual observations received
by the robotic platform. They argued that colour histograms are not distinctive enough, and that the Bayes filter
helps to disambiguate places with similar appearance.

Kosecka et al. [24]] proposed a navigation strategy using gradient orientation histograms as image descriptor.
In an exploration phase, a topological map was built by comparing successive frame descriptors. For each node, a
set of representative views was computed using Learning Vector Quantization (LVQ). During the navigation, the
current frame’s histogram was extracted and compared with each node representatives using the Euclidean distance
to determine the most similar location. Inspired by Kosecka’s work, Bradley et al. [25] introduced a topological
localization approach in large outdoor environments using Weighted Gradient Orientation Histogram (WGOH)
features. These features were computed partitioning the image into a grid, and extracting an 8-bin histogram
of the gradient orientations for each part of the grid, weighted by the magnitude of the gradient at each point
and the distance from the center to the region. A WGOH descriptor was formed concatenating each histogram
and normalizing it to the unit length. In order to avoid a dependence of the feature vector to any particular
component, values higher than 0.2 were capped to 0.2 and the final descriptor was re-normalized again. Their
experiments covered over 100,000 images and 67 km of traverse with a high success. Similarly, Weiss et al. [26]
also split each image into a grid, but computing an 8x8 histogram of integral invariants using two relational
kernels. These integral invariant features are features which are invariant to some Euclidean motions, such as
rotations or translations. The main idea is to apply all possible transformations to each sub-image and obtain
and averaged version of these image transformations. They called this approach Weighted Grid Integral Invariant
(WGII) features. These features were combined with a particle filter for outdoor mobile robot localization. Wang et
al. [27]] introduced Orientation Adjacency Coherence Histograms (OACH) to solve the coarse part of a topological
localization process. OACH is an extension of the traditional gradient orientation histograms where two Orientation
Adjacency Histograms (OAH) are computed respectively in the edge and corner regions of the image according to
the Harris detector response and concatenated to form the final descriptor. In an OAH, the gradient orientations of
the center pixel’s 4-neighbourhood are accumulated and then normalized by the number of center pixels of each
orientation. The Jeffrey divergence between OACH descriptors was used to compare the images in the framework.

Pronobis et al. [28]] showed that receptive field responses summarized into histograms can be used for place

recognition. In a training phase, several histograms were acquired from the environment and used to train Support
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Vector Machines (SVM) as classifiers which served as a basis of a topological localization process.

2.2. The Gist descriptor

Recently, several approaches have proposed to use the Gist global descriptor [29]. Initially developed for
scene recognition, it is based on the observation that humans are able to classify images at a single glance under
certain conditions. Their authors concluded that humans are receptive to what they called the spatial envelope of
the scene, defined as a set of perceptual properties related to the shape of the space. They demonstrated that this
spatial envelope is closely correlated with second-order statistics (Discriminant Spectral Template) and with the
spatial arrangement of structures in the scene (Windowed Discriminant Spectral Template). A bank of filters (such
as Gabor filters [47]) can be used to infer a global descriptor of the scene. Principal Component Analysis (PCA)
can be also used in order to reduce the final dimension of the descriptor.

Singh and Kosecka [48] computed a Gist descriptor for panoramas applying the algorithm to each of the four
views that the omnidirectional image consisted of. They introduced a novel similarity measure between image
panoramas for these descriptors and evaluated its efficiency for loop closure detection in urban environments.
Murillo et al. [30] extended this proposal and introduced omni-gist, an adapted version of the descriptor to be
used with omnidirectional images extracted from catadioptric cameras, instead of multi-camera systems. They
improved the similarity measure for these descriptors and proposed a hierarchical topological localization and map
building algorithm based on them. In a more recent work [49], omni-gist was used in a semantic labelling process
for building indoor topological maps. The images were classified as places or transitions, which corresponds to,
respectively, the nodes and the edges of the topological map. This place classification module was integrated with
a Hidden Markov Model (HMM) to ensure the temporal consistency.

Liu and Zhang [50] employed PCA to reduce the dimensionality of a Gist descriptor for improving the ef-
ficiency and the discriminative power of the descriptor. Then, they presented a particle filter for detecting loop
closures in a SLAM system. These descriptors were taken into account in the update step of the filter. As a result,
they showed that a high recall can be obtained at 100% precision with only a few particles.

Chapoulie et al. [51] presented an approach for segmenting the environment into topological places using
spherical images. This segmentation approach was based on detecting changes in the environment and an adapted
version of Gist for spherical images. In a more recent work [32]], they argued that Gist is not well adapted to
represent this kind of images because the sphere spatial periodicity is partially lost. Then, they introduced a new
global image representation based on spherical harmonics adapted for spherical views.

Finally, motivated by the success of Gist and the BRIEF binary descriptor [52]], Sunderhauf and Protzel [31]
adapted the latter to be used as a global descriptor, introducing the BRIEF-Gist descriptor. The implementation
is very straightforward: the image is downsampled to the size of a patch and a BRIEF descriptor is computed
from its center. Other possible implementation consists in partitioning the image into a grid, compute the BRIEF
descriptor for each patch and concatenate them to form the final descriptor. They used this simple descriptor for
loop closing in a SLAM system that can be used in a large-scale scenario, as is shown in their experiments. As a

main drawback, BRIEF-Gist is not able to detect bidirectional loops. In this regard, Arroyo et al. [53]] introduced
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an algorithm called Able for Binary-appearance Loop-closure Evaluation applied to Panoramas (ABLE-P) which
can detect these cases. They divided each panorama in sub-panoramas and extracted an LDB binary descriptor
for each of them [54]. The final image descriptor is created concatenating the different LDB strings. The loop
closures are then found correlating the descriptors of the different panoramas using the Hamming distance. In a
more recent work [55]], they updated their algorithm to be used with a monocular or a stereo camera (ABLE-S)
and added disparity information to the LDB descriptor, generating the D-LDB descriptor, which is also used for

detecting loop closures.

2.3. Vertical regions

Extracting vertical lines in order to define globally omnidirectional images has also been used for topological
mapping and localization, specially for indoor environments because of the nature of their structures. In this regard,
Lamon et al. [33] presented the concept of fingerprints of places. A fingerprint is a circular list of features extracted
using different algorithms. In their case, they used two detectors: a vertical edge detector based on histograms and
a colour patch detector. They also presented an algorithm for matching these sequences of features based on a
minimum energy algorithm, and employed this framework for global localization. Tapus et al. [56]] demonstrated
that this fingerprint representation combined with an uncertainty model of the features can improve the localization
results. After this work, Tapus and Siegwart [57] expanded the fingerprint concept incorporating information from
a laser range finder in an incremental topological mapping approach for multi-room indoor environments.

Liu et al. [34] introduced the Fast Adaptive Color Tags (FACT) descriptor, employed for a topological mapping
approach. It is based on the fact that, in indoor environments, the important vertical edges (windows, columns,
etc.) naturally divide the indoor environment into several meaningful cuts. For each cut, the average colour value
in the U-V space is computed. This U-V average value and the width of the region form a region descriptor called
tag. A scene descriptor is formed concatenating each region descriptor in a vector. Scene matching between new
scenes and existing nodes was performed computing the 2D Euclidean distance between colour descriptors, and
recursively comparing the widths of the regions according to an empirically determined inequality. In order to take
into the account the main drawbacks that this solution presented, they improved their descriptor publishing another
version called DP-FACT [35], where a Dirichlet Process Mixture Model is used to combine colour and geometry

features extracted from omnidirectional images.

2.4. Discrete Fourier transform

Several authors have proposed to use the Discrete Fourier Transform (DFT) as a global image representation
method. Menegatti et al. [36] unwarped omnidirectional images over a panoramic cylinder. These panoramic
cylinders were expanded row by row into their Fourier series. An image was represented by the first 15 Fourier
coefficients i.e. the 15 lowest frequency components, reducing the storage needs for each reference view. The set
of these selected coefficients was called by their authors as Fourier signatures. They also proposed a method for
an automatic organization of a set of reference images obtained in an exploration phase into a visual memory and a

navigation approach using this framework. To overcome the perceptual aliasing problem that the original approach
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presented, in a following work [37], they improved their localization system fusing this image representation
with a particle filter. Based on these works, Paya et al. [S8] contributed with an incremental mapping process,
creating the map while the robot is traversing the environment and Ranganathan et al. [59] introduced the concept
of Probabilistic Topological Maps (PTM), where a particle filter was employed for approximating the posterior

distribution over the possible topologies given the available sensor measurements and an odometry source.

2.5. Biologically-inspired approaches

Biologically-inspired solutions try to emulate the information processing methods and problem resolution abil-
ities of the biological systems, simulating the behaviour of living organisms. Several topological mapping and
localization solutions fall under this subcategory.

Gaspar et al. [22] mapped an indoor environment emulating the vision-based navigation capabilities of insects
using an omnidirectional camera. The images of the topological map were encoded as a manifold in a low-
dimensional eigenspace obtained from PCA. In an offline phase, they created a representation of the environment
resulting into a topological map, which was later used to navigate using a visual following approach.

Milford et al. [60] introduced RatSLLAM, a single-camera SLAM system derived from models of the hippocam-
pal complex in rodents. According to the authors, the operation of these models appears to be related with some
topological and metric properties to its advantage, so it can be considered as a hybrid approach. The environ-
ment representation was built using a competitive attractor network structure called pose cells, which was used to
concurrently represent the belief about the location and orientation of the robot. The system performed a colour
segmentation process [38] to detect some coloured cylinders spread around the experimental area in order to update
these pose cells. This approach was later adapted by Prasser et al. [61] to be used in outdoor environments and
using an omnidirectional camera as a main input sensor. Images were described using histograms of the hue and
saturation colour bands and compared using the 2 statistic. Later, Milford and Wyeth [39] mapped a path of 66
km along an entire suburb using RatSLAM, showing that it can be used in a long-term operation. A scanline inten-
sity profile is employed as image descriptor, which is a one-dimensional vector formed by summing the intensity
values in each pixel column, and then normalizing the final vector. Glover et al. [62] combined RatSLAM with
other approaches in order to address the challenging problem of producing coherent maps across several times of

the day.

2.6. Other approaches

Winters et al. [21]] utilized an omnidirectional camera to create a topological map from the environment during
a training phase. Nodes were sets of images with common properties, and links were sequences of consecu-
tive views between two nodes. The large image set obtained was compressed using PCA, resulting in a low-
dimensional eigenspace from which the robot could determine its global topological position using an appearance-
based method.

Badino [43] presented an outdoor localization approach based in a descriptor called Whole Image SURF (WI-

SURF), where a Speeded Up Robust Feature (SURF) descriptor for the entire image is computed according to [|63]].
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Each node of the map is associated with the GPS coordinates where it was acquired, and a Bayesian filter is used
to compute the probability of being in each discrete place of the map. They reported successful results for long-
term localization experiments, concluding its validity for solving the global localization problem. In a more recent
work [64]], they presented an algorithm for localizing a vehicle on an arbitrary road network.

Lategahn et al. [44]] studied how to generate robust descriptors for environments under severe lighting changes.
They proposed to use building blocks which can be used to construct millions of descriptors. In that work, an
evaluation function to evaluate the performance of these descriptors was presented, as well as a search algorithm
for them. Results for loop closure detection were also presented. The experiments were carried on using the best
combination of these building blocks found and was called Dird is an Illumination Robust Descriptor (DIRD).

A complete loop closing system for autonomous mobile robots was proposed by Lui and Jarvis, where omnidi-
rectional images was described employing a GPU-based 2D Haar Wavelet decomposition. These images are used
to create a database of signatures. A relaxation algorithm is executed to adjust the topology each time the vehicle
revisits a previously seen place.

Nourani-Vatani et al. [45] proposed to use optical flow information to detect changes in the environment,
using the Optical Flow Moment (OFM) and the Optical Flow Shape Context (OFSC) descriptors. Then, statistical
attributes from the flow were extracted in order to define each location. Once a database of nodes was generated,
where a node was defined as a detected scene change, the most likely location was obtained using the Mahalanobis
and x? distances. They assessed their approach in indoor and outdoor environments, showing that it could be used
in several kinds of scenarios.

In a more recent research line, Milford and Wyeth presented SeqSLAM [40], where instead of searching for a
single previously seen image given the current frame, they performed the localization process recognizing coherent
sequences of local consecutive images. They showed that this approach could be used for visual navigation under
weather or season changes. They employed normalized patches in a cropped version of the original image, and
Sum of Absolute Differences (SAD) to compare these patches. They have also showed that route recognition can
be accomplished even with a few bits per image [65] and they studied the effect of the length of the sequences onto
the SeqSLAM algorithm performance [66]. An evolution of the SeqSLAM algorithm called Sequence Matching
Across Route Traversals (SMART) has been recently proposed in [67], which improves its general applicability by
integrating self-motion information to form spatially consistent sequences, and new image matching techniques to
handle greater perceptual change and variations in translational pose.

Wau et al. [68]] presented a loop closure detection method which uses an extremely simple image representation.
Images are smoothed using a Gaussian kernel, and then resized to a small patch. The Otsu’s method is then
employed to binarize the image, producing a binary code of a few hundred bits. The mutual information for the
image pairs is used as a similarity measure. According to their results, they are able to detect loop closures in a

map of 20 million key locations.



Table 2: Summary of topological mapping and localization solutions based on global image descriptors.

References Camera  Map Tasks Environment  Descriptor

Winters [21]] Omnidir Topo Map + Loc  Indoors PCA

Gaspar [22] Omnidir Topo Map + Loc  Indoors PCA

Ulrich [23] Omnidir  Topo Map + Loc  In + Out Colour Hist.

Werner [46] Omnidir Topo SLAM Indoors Colour Hist.
Kosecka [24] Mono Topo Map + Loc  Indoors Gradient Orien. Hist.
Bradley [235]] Mono Topo Map + Loc  Outdoors WGOH

Weiss [26] Mono Topo Map + Loc  Outdoors WGII

Wang [27]] Mono Topo Map + Loc  In + Out OACH

Pronobis [28]] Mono Topo Loc Indoors Receptive Field Hist.
Singh [48]] Omnidir Topo Map + Loc  Outdoors Gist

Murillo [30] Omnidir Hybrid Map+Loc In+ Out Omni-Gist

Rituerto [49] Omnidir Topo Mapping Indoors Omni-Gist
Sunderhauf [31]] Mono Topo SLAM Outdoors BRIEF-Gist

Arroyo [53] Omnidir  Topo Map + Loc  Outdoors LDB

Arroyo [S3]] Stereo Topo Map + Loc  Outdoors D-LDB

Liu [50] Mono Topo SLAM Outdoors Gist

Chapoulie [51] Sphere Topo Map + Loc  In + Out Gist

Chapoulie [32] Sphere Topo Map + Loc  In + Out Spherical Harmonics
Lamon [33] Omnidir  Topo Loc Indoors Fingerprints

Tapus [56, 57]] Omnidir Topo Map + Loc  Indoors Fingerprints

Liu [34] Omnidir Topo Mapping Indoors FACT

Liu [35] Omnidir Topo Mapping Indoors DP-FACT
Menegatti [36, 137]] Omnidir  Topo Map + Loc  Indoors Fourier Signatures
Paya [58]] Omnidir  Topo Map + Loc  Indoors Fourier Signatures
Ranganathan [59] Omnidir  Topo Mapping Indoors Fourier Signatures
Milford [60] Mono Hybrid SLAM Indoors Colour Segmentation
Prasser [61]] Omnidir Hybrid SLAM Outdoors Colour Hist.

Milford [39] Mono Hybrid SLAM Outdoors Scan Intensity Prof.
Glover [62]] Mono Hybrid SLAM Outdoors Scan Intensity Prof.
Lui [41),142] Omnidir Hybrid SLAM In + Out 2D Haar Wavelet Dec.
Badino [43]] Mono Hybrid Map + Loc  Outdoors WI-SURF

Xu [64] Mono Hybrid Map + Loc  Outdoors WI-SURF

Lategahn [44]] Mono Hybrid SLAM Outdoors DIRD

Nourani [43]] Mono Topo Map + Loc  In + Out OFM/OFSC

Milford [40}165,166] Mono Topo SLAM Outdoors Normalized Patches
Pepperell [67] Mono Topo SLAM Outdoors Normalized Patches
Wau [68] Mono Topo Map + Loc  Outdoors Binarized Patches

10
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3. Methods based on local features

In the previous section we have reviewed solutions based on global representations, where the description is
performed using the entire image content. Such descriptions work well for capturing the general structure of the
scene, but they are not able to cope well with several visual problems like partial occlusions or camera rotations.
These problems have been addressed more intensively through the recent development of local features.

During the extraction step, a set of distinctive local features, which capture the essence of the image, are
detected. These features can be derived from the application of a neighbourhood operation or searching for specific
structures within the image, such as corners, blobs or regions. Then, a description step is performed, where some
measurements are taken from the vicinity of each local feature to form a descriptor. Initially, descriptors were
formed as a multi-dimensional floating-point vectors. Recently, several authors have proposed binary descriptors,
where local features are defined as bit strings, reducing the storage and computational needs.

In order to identify the same local features in other images, they need to be invariant to certain properties, such
as camera rotations or affine transformations. According to [69]], a good feature detector should have the following
properties: repeatability, distinctiveness, locality, quantity, accuracy and efficiency. The most important property is
repeatability, that can be achieved either by invariance, when large deformations are expected because of relevant
view changes, or by robustness, in case of relatively small deformations.

Tables [3] and [ collect relevant information about main feature detectors and descriptors. Formal and detailed
descriptions of them are, however, considered out of the scope of this survey. The interested reader is referred
to [69-72]. In the tables, detectors are classified based on the type of the feature extracted following the guide-
lines of [69], where they distinguished between corner, blob and region detectors. The descriptors are classified
according to their type (floating-point or binary). The descriptor size, in number of components, is also showed
in the table. These tables do not intend to be complete, but a summary of the most important facts about local
feature detection and description. The main topological solutions based on local features can be found in Table 5}
following the same guidelines than the previous section.

Several authors have used local features to perform topological mapping and localization tasks, specially since
the release of the Lowe’s Scale-Invariant Feature Transformt (SIFT) algorithm. Kosecka and Yang [97. 98] used
SIFT features for describing images in indoor environments and performed a global localization process based on
a simple voting scheme. In order to overcome the problems resulting from dynamic changes in the environment,
they proposed to incorporate additional knowledge about neighbourhood relationships between individual locations
using a Hidden Markov Model. The likelihood function was based on the number of correspondences between the
current image and past locations. Following this work, in [99] they presented a feature selection strategy in order
to reduce the number of keypoints per location. This strategy was carried on measuring the discriminability of the
individual features to describe each topological location. Zhang [[100] also presented a method for selecting a subset
of visual features from an image called Bag-of-Raw-Features (BoRF). The features were selected according to the
scale where they were found. A location was represented by the set of features that can be matched consecutively
in several images, applying a keyframe selection policy based on their previous work [138]. The main problem

that BoRF presents was that the number of features to manage increases while new images were added, and a

11



Table 3: Summary of local feature detectors. Check marks between parentheses indicate that there exist versions that are invariant to scale or
affine transformations.

Invariant
g
5 o 2
=) S E
Name References Type of detector &~  © <
Harris [73]] Corners v ) W)
Shi and Tomasi [74] Corners v
SUSAN [75] Corners v
FAST [76l Corners v ()
FAST-ER [771] Corners v ()
ORB 78] Corners v oV
AGAST [79] Corners v )
BRISK [180] Corners v o
SIFT 1811 Blobs v v
SURF [182]] Blobs v oV
CenSure [63]] Blobs v oV
Star [183]] Blobs v v
SUSurE [184] Blobs v v
KAZE [185]] Blobs v oV
AKAZE 86l Blobs v v
ASIFT [187] Blobs v v v
MSER [188]] Regions v Vv v
Table 4: Summary of local feature descriptors.
Invariant
g
g 8 2
c 8 £
Name References Component type Number of components /&~ v <
SIFT 1811 Float 128 v v
SURF [82] Float 32,64, 128 v v
U-SURF [82] Float 32,64, 128 v
GLOH [72] Float 64, 128 v v
PCA-SIFT 1891 Float 36 v v
M-SIFT [90] Float 128 v v
DAISY [o1] Float 200 v v
LESH [92]] Float 128 v v
ASIFT 1871 Float 128 v v Vv
KAZE 1851 Float 64 v v
BRIEF [52]] Bit 128, 256, 512
ORB 78] Bit 256 v v
BRISK (801 Bit 512 v v
FREAK 93] Bit 512 v oV
AKAZE 86l Bit 488 v v
D-BRIEF [94] Bit 32 v
LDAHash [95]] Bit 128 v v
BinBoost [96] Bit 64 v
LDB 1541 Bit 256,512 v v
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Table 5: Summary of topological mapping and localization solutions based on local features.

References Camera  Map Tasks Environment Feature
Kosecka [97H99] Mono Topo Map + Loc  Indoors SIFT

Zhang [[100] Mono Topo Map + Loc  Indoors SIFT

Zhang [[101] Mono Topo SLAM Indoors SIFT

Rybski [102]] Omnidir Topo Map + Loc  Indoors KLT

He [103]] Mono Topo Map + Loc  Outdoors SIFT

Sabatta [[104] Omnidir  Topo Map + Loc  Indoors SIFT

Johns [105] Mono Topo Map + Loc  Indoors SIFT
Kawewong [106,1107] Omnidir Topo SLAM In + Out PIRF (SIFT)
Tongprasit [108] Omnidir Topo SLAM In + Out PIRF (SURF)
Morioka [109] Omnidir Hybrid SLAM Indoors 3D-PIRF (SURF)
Andreasson [90]] Omnidir  Topo Map + Loc  Indoors KLT/M-SIFT
Valgren [[110] Omnidir Topo Mapping Indoors KLT/M-SIFT
Valgren [[L11] Omnidir Topo Mapping In + Out SIFT

Valgren [[112] Omnidir Topo Loc Outdoors SIFT/SURF
Ascani [[113]] Omnidir Topo Loc In + Out SIFT/SURF
Anati [114] Omnidir Topo Map + Loc  In + Out SIFT

Zivkovic [115]] Omnidir Hybrid Map+ Loc Indoors SIFT

Booij [[116] Omnidir Hybrid Map + Loc Indoors SIFT

Booij [117] Omnidir Hybrid Map+Loc In+ Out SIFT

Dayoub [118] Omnidir Hybrid Map+ Loc Indoors SURF

Blanco [119}120] Stereo Hybrid SLAM Indoors SIFT

Tully [121] Omnidir Hybrid Map+ Loc Indoors SIFT

Tully [122] Omnidir Hybrid SLAM Indoors SIFT

Segvic [123]] Mono Hybrid Map + Loc  Outdoors SIFT/Harris/MSER
Ramisa [[124] Omnidir Topo Map + Loc  Indoors MSER/SIFT/GLOH
Badino [125] Mono Hybrid Map + Loc  Outdoors SURF/U-SURF
Dayoub [126]] Omnidir  Topo Map + Loc  Indoors SURF

Bacca [[127, [128]] Omnidir  Topo Map + Loc  Indoors SIFT/SURF
Bacca [129] Omnidir Topo SLAM Indoors Edges

Romero 130} 1131]] Omnidir  Topo SLAM Outdoors MSER

Majdik [[132] Mono Topo Loc Outdoors ASIFT

Saedan [133] Omnidir Hybrid SLAM Indoors Wavelets
Kessler [[134]] Omnidir  Topo SLAM Indoors SIFT

Maohai [135]] Omnidir  Topo Map + Loc  Indoors ASIFT
Garcia-Fidalgo [136]  Mono Topo SLAM In + Out SURF
Garcia-Fidalgo [137]  Mono Topo SLAM In + Out SIFT
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linear search for matching became intractable. This drawback was overcome in [101]] by indexing features through
kd-tree structures.

Using the idea of maintaining only persistent features, several authors have proposed various solutions to the
community. Rybski et al. [102] used Kanade-Lucas-Tomasi (KLT) feature tracker for matching persistent features
in a sequence of omnidirectional images and constructed a topological map incrementally. He et al. [103] proposed
to use manifold constraints to find representative feature prototypes, which are useful to represent any image within
the environment in an efficient manner. Sabatta [[L04]] introduced a mapping and localization algorithm that exploits
the persistence of SIFT features within consecutive omnidirectional images to improve data association. He also
modified the SIFT algorithm in order to include colour information in the descriptor. More recently, Johns and
Yang [105] introduced an approach where the map is composed by a set of landmarks detected across multiple
images, spanning the continuous space between nodal images. Given a query image, matches are then made to
landmarks instead of individual images, resulting into a dense continuous topological map without sacrificing
the speed of the solution. They presented a probabilistic localization approach using the learned discriminative
properties of each landmark.

Kawewong et al. presented Position-Invariant Robust Features (PIRFs) [[106} [107]], a method for generating
averaged features from SIFT descriptors that can be matched along several consecutive frames in a temporal
window given the input sequence of images. Each place was represented by a dictionary of these representative
PIRFs, whose variation of appearance was assumed relatively small with regard to robot motion. These features
were then used in an incremental appearance-based SLAM algorithm called PIRF-Nav, which was based on a
majority voting scheme. Despite they showed several improvements in terms of recall regarding other common
solutions, the main problem of this approach was the computational cost, since some images took long time to be
processed. In order to improve this performance, Tongprasit et al. [108]] modified the original PIRF algorithm and
added a new dictionary management in a SLAM approach called PIRF-Nav 2. This method was 12 times faster
than the original PIRF-Nav sacrificing only a small percentage of recall. Morioka et al. [1L09] presented a method
for mapping PIRFs in three-dimensional space combining them with an odometry source. Their method, called
3D-PIRF, was validated navigating in crowded indoor environments.

Andreasson and Duckett [90] presented a simplified version of the SIFT algorithm (M-SIFT) adapted to om-
nidirectional images, where the descriptors are only found in one resolution, because full invariance to scale and
translation is not required in their case. Interest points are selected using the Shi and Tomasi method. Several
image description methods used for topological localization were presented, showing the M-SIFT approach the
best performance with regard to the other ones. Using the M-SIFT descriptor, Valgren et al. [[110] represented the
environment by means of an image similarity matrix. They avoided exhaustively computing the affinity matrix
by searching for cells which are more likely to describe existing loop closures. Later, in [L11], they employed
exhaustive search, but introduced an incremental spectral clustering algorithm to reduce the search space incre-
mentally when new images are processed. They also addressed the topological localization problem for outdoor
environments over time [112], comparing SIFT and SURF for these purposes and concluding that SURF performs

better for topological localization in outdoor scenarios. Moreover, Ascani et al. [113] found that SIFT performs
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better in indoor environments for topological localization tasks. Other authors that created a topological map from
a similarity matrix are Anati and Daniilidis [[114]. In their work, they introduced a novel image similarity measure
for panoramas which involves dynamic programming to match images using both the appearance and the relative
positions of local features simultaneously. The probability of loop closures is modelled using a Markov Random
Field (MRF) over the image similarity matrix.

Some researchers construct hierarchical maps of the environment from a set of input images. These approaches
combine higher level conceptual maps (usually topological) with lower level and geometrically accurate maps,
trying to maximize the advantages and minimize the problems of each kind of map alone and combine them in a
different mapping technique. Zivkovic et al. [[L15] presented an algorithm for automatically generating hierarchical
maps from images. A low-level map is built using SIFT features and geometrical constraints. They then use the
graph-cuts algorithm to cluster nodes to construct a high-level representation. This hierarchical representation was
later employed in [116], where they showed a navigation system based on a topological space which used the
epipolar geometry and a planar floor constraint to obtain a heading estimation. This work was further improved
in [117] proposing a incremental data association scheme based on the concept of Connected Dominating Set
(CDS) of a graph. Given a new image, this method is used to find a subset of past images that represents the
complete image set, enabling an efficient loop closure detection during the trajectory of the robot. Dayoub et
al. [118] presented a solution where an initial dense pose-graph map of the environment were generated using a
graph-based SLAM algorithm. This map is then used to infer a sparse hybrid map with two levels, global and local.
The global level is represented by a topological map built using a dual clustering approach. On the local level, each
node stores a spherical view representation of the features extracted from images recorded at the position of the
node, which is used for estimating the robot’s heading using a multiple-view geometry approach.

Instead of inferring a high-level topological map from a set of geometric relations, other authors have proposed
an alternative hybrid representation where each node of a global topological map includes its own metric sub-map.
Blanco el al. [[119] presented an approach called Hybrid Metric-Topological SLAM (HTM-SLAM). The sequence
of areas traversed by the robot is modelled as a graph whose nodes are annotated with metric sub-maps and whose
arcs include the coordinate transformation between these areas. They also proposed a unified Bayesian approach
to estimate the robot’s path while traversing the environment. This work was improved in [120] using spectral
techniques to efficiently partition the map into sub-maps and deriving expressions for applying their ideas to other
sensors, such as a stereo camera. In the same line, Tully et al. [121] proposed a hybrid localization solution based
on the hierarchical atlas map [139], a structure specially created for robots operating in large environments. In
this framework, a global topological map decomposes the space into regions within which a feature-based map is
built. The localization process is separated in two steps. First, a discrete probability distribution is computed using
a recursive Bayesian filter in order to determine the most probable map. Next, a metric position is estimated within
the correspondent sub-map using a Kalman filter. Later, in [122], they investigated SLAM as a multi-hypothesis
topological loop closing problem. Both works were combined in a more complete solution recently in [140].

Segvic et al. [[123] created a hybrid visual navigation framework for large-scale mapping and localization com-

bining several features extracted from monocular perspective images. Despite the approach supported navigation
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based exclusively on 2D image measurements, it relied in 3D reconstruction procedures. Ramisa et al. [124] also
tried to combine several local feature region detectors in order to create a signature of a place for localization
purposes. They showed that these combinations increase notably the performance compared with the use of one
descriptor alone. Badino et al. [[125]] integrated metric data directly into a topological map in their hybrid approach
called topometric localization. Each node of the graph is stored together with its GPS position. They grab im-
ages at a constant Euclidean distance, and for each one, visual local features are extracted. A feature database is
generated next, where each feature is stored with a reference to the node corresponding to its real location. This
database is then used by a Bayes filter to estimate the probability density function of the position of the observer
as the vehicle moves along the route.

The multi-store model of human memory proposed by Atkinson and Shiffrin [[141] has inspired several ap-
proaches. This model divides the human memory into three stores: Sensory Memory (SM), Short-Term Memory
(STM) and Long-Term Memory (LTM). Input information is stored in the SM. A selective attention process de-
termines which information can be moved to the STM. Information stored in this memory can be forgotten as
soon as it is no longer attended to. Through a rehearsal process, information is moved from the STM to the LTM
in order to be retained for longer periods. Dayoub and Duckett [[126] used these concepts in order to keep up to
date the appearance of a particular place in a map in response to the dynamic changes of the environment during
a long-term operation. Bacca et al. [[127} [128]] adapted this human memory model considering a weighted voting
scheme. This allows to pass to the STM only strong features present in the environment. The memory model is
implemented using a Feature Stability Histogram (FSH), which stores information about the number of times each
feature has been observed in each node. A more complete FSH approach was presented in [129], adapting the
initial solution to operate in SLAM conditions.

Romero and Cazorla [[130, [131] proposed an approach to construct topological maps matching graphs of in-
variant features. Each image is segmented into regions in order to group the extracted invariant features in a graph
so that each graph defines a single region of the image. The matching process takes into the account the features
and their structure using the Graph Transformation Matching (GTM) algorithm.

Recently, Majdik et al. [132] dealt with the air-ground matching localization problem, where images taken by
a camera mounted on a Micro Aerial Vehicle (MAV) need to be matched with a set of images stored in a database
of geotagged pictures obtained from Google Street View. To overcome the severe viewpoint changes presented,
they proposed to generate virtual views of each scene, exploiting the air-ground geometry of the system. The best
image correspondences are obtained using a histogram-voting scheme. They compared their solution with several
state-of-the-art approaches, outperforming them in computational terms and precision-recall rates.

Other solutions based on local features [133| [134]] included particle filters as a method to estimate the proba-
bility distribution of the location over the topological map. More recently, Maohai et al. [135] combined a particle
filter with a GPU-based image description and matching algorithm to define a complete topological autonomous
navigation system for indoor environments.

In a previous work [[136]], Garcia-Fidalgo and Ortiz proposed an appearance-based approach for visual map-

ping and localization. On the one hand, a new image similarity measure between images based on number of

16



415

420

425

430

435

440

445

matchings and their associated distances was introduced. On the other hand, to optimize running times, matchings
between the current image and previous visited places were determined using an index based on a set of random-
ized KD-trees. Further, a discrete Bayes filter was used for predicting loop candidates, taking into account the
previous relationships between visual locations. The approach was validated using image sequences from several
environments. In order to avoid redundant information in the resulting maps, Garcia-Fidalgo and Ortiz recently
presented a map refinement framework [[137]], which takes into account the visual information stored in the map for
refining the final topology of the environment. These refined maps save storage space and improve the execution

times of the localization tasks.

4. Methods based on Bag of Words

The Bag-of-Words (BoW) algorithm was initially developed for text retrieval, where a BoW is a sparse vector
representation of a document counting the number of occurrences of each word given a predefined vocabulary.
Documents with more words in common are likely to describe the same topic. Exporting these concepts to the
computer vision field [[142], the idea is to treat local features as visual words and quantize them according to a set of
representative features, known as codebook or visual vocabulary. This quantization is performed by mapping each
descriptor of the image to the nearest image word in the dictionary. Then, the image is represented by a histogram
of occurrences of each reference local feature presented in the image, reducing the total set of feature descriptors
found to a vector of integers. Since some words are more discriminative than others when identifying an image,
the BoW vector is normally weighted by some scoring algorithm such as the Term Frequency-Inverse Document
Frequency (TF-IDF). The most common way of generating a visual dictionary is to cluster the descriptors extracted
from a set of training images using some clustering algorithm, such as k-means, where the learned centroids are
considered as the reference visual words.

As will be seen in Section[7} generating the visual dictionary in an offline phase presents several problems. In
order to overcome these drawbacks, some authors have proposed to build it in an incremental fashion, adapting
the codewords to the appearance of the operating scenario. In this section, the BoW-based works are classified
according to this criterion. The main approaches based on BoW schemes are summarized in Table[6]following the

same guidelines as the previous section.

4.1. Offline visual vocabulary approaches

Despite the BoW algorithm has been used in other areas, such as for internet search engines or for scene catego-
rization [[179}[180], it was first applied to visual search techniques in the seminal work of Sivic an Zisserman [142],
where this model was employed in order to find similar scenes in video sequences. SIFT features were extracted
from each frame and then quantized as BoW vectors, creating a database of BoW image representations. They
presented an interactive application where the user could query the image database to find similar frames , i.e. with
enough features in common. A lookup table called inverted file, which mapped image words to the video frames
where they were found, was also used to speed up the retrieval process. Wang et al. [[143][144] presented a coarse-

to-fine global localization system based on the BoW model, where interest points detected with the Harris-Laplace
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Table 6: Summary of topological mapping and localization solutions based on BoW schemes.

References Camera Map Tasks Environment Features

Wang [143][144]] Mono Topo Map + Loc  In + Out HARRIS/SIFT
Fraundorfer [[145]] Mono Topo Map + Loc  Indoors MSER/SIFT
Konolige [I83]] Stereo Hybrid SLAM In + Out STAR/FAST/SAD
Cummins [146,147]  Mono Topo SLAM Outdoors SIFT/SURF
Cummins [148 [149]] Mono Topo SLAM Outdoors SURF
Cummins [150,[151] Omnidir Topo SLAM Outdoors SURF

Newman [152] Omnidir Hybrid SLAM Outdoors SURF

Maddern [[153} [154]] Omnidir Hybrid SLAM Outdoors SURF

Maddern [155] Omnidir Hybrid SLAM Indoors SURF

Paul [[156] Mono Topo SLAM Outdoors SURF

Johns [[157,[158]] Mono Topo SLAM Outdoors SIFT

Galvez [159, 1160]] Mono Topo SLAM In + Out FAST/BRIEF
Mur-Artal [161]] Mono Topo SLAM Outdoors ORB
Ranganathan [[162] Mono Hybrid SLAM Indoors SIFT

Cadena [163] Stereo Topo SLAM In + Out SURF
Ciarfuglia [164] Mono Topo SLAM In + Out SURF

Majdik [165] Mon/Ste  Topo SLAM Outdoors SURF

Schindler [[166]] Mono Topo Map + Loc  Outdoors SIFT

Achar [[167]] Mono Topo Map + Loc  Outdoors SIFT

Lee [168]] Mono Topo SLAM Indoors MSLD

Filliat [[169] Mono Topo Map + Loc  Indoors SIFT

Angeli [170] Mono Topo SLAM Indoors SIFT

Angeli [171] Mono Topo SLAM In + Out SIFT/Color Hist.
Angeli [172] Mono Topo SLAM Indoors SIFT/Color Hist.
Labbe [173}1174] Mono Topo SLAM In + Out SURF
Nicosevici [175,[176] Mono Topo SLAM Underwater SURF

Murphy [177] Mono Topo SLAM In + Out -

Garcia-Fidalgo [178] Mono Topo Map + Loc  Outdoors FAST/BRIEF
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detector were described using the SIFT algorithm. In an offline phase, the vocabulary and the inverted index were
created, and then used for localization. An epipolar geometry step was incorporated in order to verify whether the
loop candidate obtained from the BoW stage was plausible.

The size of a dictionary can vary within a large range, which has an impact on the performance of the retrieval
process. The larger the size, the more discriminative the vocabulary is, but at a higher computational cost for finding
the nearest reference descriptor. The hierarchical visual vocabulary has been proposed as a relevant improvement
towards alleviating this problem [181]], where the original training set of descriptors is clustered in a small number
of clusters, and then each cluster is recursively clustered again until achieving the desired number of words. Given
a query descriptor, finding its closest word consists in traversing the tree from the root until reaching a leaf node.
This hierarchical representation, in addition to the inverted index, makes the BoW algorithm an ideal and scalable
approach for searching millions of images in an efficient way and it is a good option to consider when mapping
large environments. Fraundorfer et al. [145] applied this hierarchical dictionary to the visual navigation problem,
presenting a highly scalable vision-based localization and mapping method using image collections. For each
frame captured by the camera, they used the dictionary structure and the inverted file to retrieve the most likely
images. Using a RANSAC procedure, they performed a geometry verification step against these candidates, which
can be used to determine if the image closes a loop or otherwise is a new place to be added to the map. They used
the local geometric information to navigate within the generated topological map. Konolige et al. [83] proposed
a SLAM solution based on an adapted scheme of this hierarchical codebook using a stereo camera. As shown in
their results, the approach, which was assessed in indoor and outdoors environments, was able to find loop closures
in paths of several kilometers. A strong geometric filter was used to eliminate false positives when detecting loop
closures.

Probably the most well-known solution that falls into this category is the Cummins and Newman’s Fast
Appearance-Based Mapping (FAB-MAP) approach [146} [147]], proposed under the assumption that modeling the
probabilities that the visual words appear simultaneously can help in the localization process. These probabilities
were approximated by a Chow Liu tree, computed from a set of training data as the maximum-weight spanning tree
of a directed graph of co-occurrences between visual words. This approximation permitted the authors to compute
efficiently an observation likelihood which was used in a Bayes filter for predicting loop closure candidates. The
main drawback presented by the original FAB-MAP algorithm was the high computational cost, since every time
the robot collected an observation, the likelihood needed to be computed for each location existent in the map. To
solve this problem, Cummins and Newman [148 [149] introduced a probabilistic bail-out test based on the use of
concentration inequalities for rapidly identifying promising loop closure hypotheses and then avoid to compute the
likelihood for all locations. Later, an even faster version called FAB-MAP 2.0 [[150} [151]] was presented adapting
the probabilistic model to be used with an inverted index architecture similar to image typical search engines. This
scheme was assessed using a dataset of 1,000 km composed by omnidirectional images and GPS coordinates to be
used as ground truth. FAB-MAP was combined with a laser in the work of Newman et al. [[152]], where it was used
as a component to detect loop closures in urban scenes.

Initially, the authors only published FAB-MAP as binaries to the community. For this reason, Glover et al.
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developed OpenFABMAP [182], a fully open-source implementation of the algorithm, adding some improvements.
OpenFABMAP was a key component in the solution proposed by Maddern et al. called Continuous Appearance-
based Trajectory SLAM (CAT-SLAM) [[153}[154]], where an appearance-based SLAM system was improved with
odometric information using a particle filter in order to obtain an estimation of the position of the vehicle. An
extension of CAT-SLAM called CAT-Graph was introduced in [[155]] combining multiple visits to the same place
to build a topological graph-based representation of indoor environments. These graphs were used in the mapping
and localization processes according to the loop closures detected by the appearance-based module.

Since the BoW model used in FAB-MAP does not take into account the spatial arrangement of the visual
words, Paul and Newman introduced FAB-MAP 3D [156], where they demonstrated that integrating this kind
of information in the algorithm improved the localization accuracy. Using a random graph, they modeled the
word co-occurrences as well as their pairwise distances and showed how to accelerate the inference process with
a Delaunay tessellation of this graph. Another attempt to include spatial information within the BoW model for
localization is the recent work by Johns and Yang, where they presented the Feature Co-occurrence Maps (Cooc-
Map) [157], where local features are quantized in both feature and image space and a set of statistics regarding
their co-occurrence at different times of the day are calculated. They also introduce a new geometric feature
matching algorithm for this kind of representation and showed how sequential matching can be incorporated into
their solution. They also showed that learning the properties of local features observed during long periods of time
can be more accurate for localization than representing a location using a single image [158]].

An attempt to create a visual dictionary from binary features can be found in the work of Galvez-Lopez and
Tardos [159} 160]. They adapted the hierarchical BoW model of Nister to be used with keypoints detected with
FAST and described with the BRIEF algorithm. Other novelties of their work included a direct index to obtain
correspondences between images in a efficient manner and matching images in groups to increase the accuracy
of the loop closure detection process. Using this framework, they are able to detect loop closures in sequences of
19,000 images spending an average time of 16 ms per image, presenting an interesting improvement in performance
in comparison to other solutions. Their dictionary-building approach was recently used in combination with the
ORB descriptor in [161]], showing improvements in the recognition performance.

Ranganathan and Dellaert presented Online Probabilistic Topological Mapping (OPTM) [[162], an online loop-
closing algorithm based on a Rao-Blackwellized particle filter which was used for updating incrementally the
posterior on the space of all possible topologies whenever a new measurement arrived. Since OPTM was sensor
independent, it was assessed with a laser range finder, an odometry source and visual input in indoor environ-
ments. A BoW model based on a multivariate Polya distribution was used for quantizing SIFT descriptors. OPTM
improves a previous framework called Probabilistic Topological Maps (PTM) [183] by enhancing the inference
process so that it can be used online.

Cadena et al. [[L63] introduced a place recognition framework based on stereo vision which combined a
BoW model for obtaining loop closure candidates and an algorithm based on Conditional Random Fields (CRF-
Matching) in order to verify these candidates. This matching method, according to the authors, was more robust

than using only epipolar geometry, since it used 3D information provided by the stereo images. This module was
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later used in [184], where a method for removing past incorrect loop closures using the Realizing, Reversing,
Recovering (RRR) algorithm was presented.

Some authors have proposed weighing strategies different to the one typically used in BoW approaches, i.e.
TF-IDF. For a start, Ciarfuglia et al. [164] showed a discriminative criterion to assign weights to the visual words
in a training phase. The weights are learnt in an approach based on the large margin paradigm and can be applied
to several similarity functions in order to compare images. This weighing scheme was assessed in a loop closure
detection module within a SLAM framework for navigating in indoor and outdoor environments. Another case is
Majdik et al. [165] who proposed an adaptive loop closure algorithm based on the hierarchical BoW model that
was able to update the weights of the visual words according to their importance when detecting loop closures.
They assessed their approach using both single and stereo cameras in outdoor environments.

While in outdoor environments GPS can be used for estimating the location of a robot, urban environments
present more challenging situations since buildings can block the satellite signals. Clearly, vision becomes an
option as exteroceptive sensor in these cases. Nevertheless, indexing images from a city can be very difficult
in computational terms, reason why the BoW model can be of help for this kind of situations. In line with this
scenario, Schindler et al. [166] presented a localization system for recognizing scenes in cities, where they were
able to index 30,000 images from a city using a BoW scheme. They showed that this huge amount of information
can be more efficiently retrieved by selecting the most informative features from the training dataset, understanding
these features as the ones that occur in all images of some specific location but not in other places. This concept was
measured using the information gain formula. They also proposed an alternative search algorithm called Greedy N-
Best Paths (GNP) improving the image retrieval performance. A more recent solution for urban localization can be
found in the work by Achar et al. [167]], where geometric inferencing was used to identify features corresponding
to moving objects in the scene. These features are then used for global localization.

Recently, Lee et al. [168] proposed a place recognition system that, instead of quantizing interest points, they
processed lines using Mean Standard-Deviation Line descriptors (MSLD). A hierarchical visual dictionary was
trained using these vectors, which was employed in combination with a Bayes filter for detecting loop closures in

indoor environments. They integrated this loop closure detection module into a SLAM solution.

4.2. Online visual vocabulary approaches

An alternative to maintain the dictionary adapted to the operating environment is to generate it online, at the
same time that the robot explores the world. In this regard, Filliat [169] introduced an approach to construct
dynamically a visual dictionary. The closest visual word to a given local feature was selected performing a simple
linear search algorithm. If these features were very far in distance, the query local feature was added as a new
word to the dictionary. This scheme was assessed using different feature spaces and employed for mapping and
localization tasks, but it was limited to small distances due to the inefficiency of the linear search algorithm. This
model was extended by Angeli et al. [[170] to incremental conditions to be used in a place recognition module.
Their approach relied on a discrete Bayes filter to estimate the probability of loop closures and to ensure temporal

coherency between predictions. During the calculation of the likelihood, the TF-IDF coefficients were extracted
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according to the distinctiveness of each word given the current image. This work was improved in [[171], where
two visual vocabularies were trained and used together as input to the Bayes filter, and further expanded in [[172]]
by constructing a complete topological SLAM system.

Inspired by the work of Angeli, Labbe and Michaud presented Real-Time Appearance-Based Mapping (RTAB-
Map) [[173}174] a loop closure detection approach for large-scale and long-term SLAM. The main contribution
of this solution was that they provided memory management mechanisms for caching a subset of the online learnt
visual words in the main memory (called Working Memory), and this subset was used for detecting loop closures.
The rest were stored in a database stored in an external memory called Long Term Memory. The transition of words
between memories was ruled by the time taken for processing images in an adaptive way. This scheme allowed to
obtain high recall rates at 100% of precision while maintaining the real time performance of the solution.

Nicosevici and Garcia [175,[176] introduced Online Visual Vocabulary (OVV), where the words were generated
at the same time that the robot was exploring the environment using a modified version of an agglomerative
clustering algorithm. The elementary clusters were created from features that can be tracked along the images of
the sequence, represented by the mean descriptor of a feature and the covariance matrix of the observed descriptors
at the current point. In order to merge these clusters, they provided a novel criterion based on the Fisher’s linear
discriminant that took into account the global distribution of the data, resulting into more distinctive visual words.
A method for efficiently reindexing the images when the vocabulary changes is also proposed. An interesting aspect
of their experimental results is that, in addition to outdoor scenarios, the approach was assessed in underwater
environments. The OVV technique was recently used in [177]] for performing unsupervised topological place
recognition in an image stream captured by a robot.

Recently [178], Garcia-Fidalgo and Ortiz proposed an appearance-based loop closure detection algorithm
based on binary features and a BoW scheme. In this approach, they introduced a method for indexing binary
features which is used to build a dictionary online. This dictionary is then employed to compute the likelihood in
a discrete Bayes filter for detecting loops, showing very promising results.

Despite they are more related to the pose-graph SLAM field, there exists other solutions that used a BoW
scheme built in an online manner that can be interesting for the reader, such as the works of Eade and Drum-

mond [[185]], Botterill et al. [186] and Pradeep et al. [187].

5. Methods based on combined approaches

In order to maximize the benefits of each approach, several authors have proposed solutions based on combi-
nations of different image descriptors for topological mapping and localization. The main approaches that fall into
this category are summarized in Table [7]specifying the same features as in previous sections.

A common approach is to use a global descriptor to perform a fast selection of similar images during an image
search and then use a more accurate process in order to confirm the association, such as matching local features.
Goedeme et al. [188]] presented a localization system for omnidirectional cameras where, for each acquired image,
they extracted vertical column segments and described them with ten different descriptors. After a clustering pro-

cess, these local descriptors were inserted into a kd-tree structure that was used by the localization process. When
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Table 7: Summary of topological mapping and localization solutions based on combined approaches.

References Camera  Map Tasks Environment Combination
Goedeme [188,[189] Omnidir Topo Map + Loc  Indoors SIFT/Columns
Murillo [190, [191]] Omnidir Hybrid Map+ Loc In+ Out SURF/Color Hist.
Wang [192] Mono Topo Map + Loc  In + Out OACH/SIFT

Weiss [[193][194] Mono Topo Map + Loc  Outdoors WGOH/WGII/SIFT
Siagian [[195]] Mono Topo Map + Loc  Outdoors Gist/SIFT
Chapoulie [[196] Sphere  Topo SLAM Outdoors SIFT/Spatial Hists.
Wang [197] Omnidir Topo Map + Loc  Indoors SURF/Convex Hull
Lin [198] Omnidir Topo Map + Loc  In + Out SURF/Convex Hull
Wang [199] Mono Topo Map + Loc  Outdoors Harris/Color Hist.
Korrapati [200,201] Omnidir Topo Mapping Outdoors SURF/BoW

a query image arrived, the same local descriptors applied to the vertical structures were computed over the entire
image and used to rapidly retrieve possible loop candidates. Next, a matching distance based on the column seg-
ments was applied between the image and each of the candidates in order to ensure a correct image matching. The
localization process was supported by a Bayes filter, which allowed them to deal with noisy measurements. Their
work was improved in [189], presenting a complete navigation system, adding SIFT features to the framework and
applying the Dempster-Shafer probabilistic theory to the topological map construction.

Murillo et al. [190] proposed a three-step hierarchical localization method for omnidirectional images. A
global color descriptor was applied to obtain a set of susceptible loop candidates, and then line features described
by their line support regions were matched using pyramidal matching in order to find the most similar image given
a predefined visual memory. The 1D radial trifocal tensor was employed to obtain a metric localization. Their
work was expanded incorporating SURF features to the framework [[191]].

Wang and Yagi [192] combined recently their OACH global descriptor with local features extracted with the
Harris-Laplace detector and described by the SIFT descriptor. They created two databases: one for OACH de-
scriptors for coarse localization and a SIFT database for fine localization. During the global localization stage,
a set of candidate images was extracted and then a fine localization step against this subset was performed. A
RANSAC-based fundamental matrix estimation strategy was employed in order to verify if the image association
was correct.

Weiss et al. [[193]] performed outdoor localization using a particle filter where particle weights were updated
according to the similarities computed using two global descriptors: WGOH and WGIL. To calculate the similarity
between two images, each descriptor was compared independently using normalized histogram intersection and the
final distance was the product of the previous results. This method was compared with SIFT, presenting a slightly
minor recall, but four times faster. Later in [194], SIFT was incorporated into their framework as an alternative to
compute the position of the robot in those cases where it can not be inferred using the combined global descriptors
method.

Another localization approach based on particle filters and inspired in biological concepts can be found in the
work proposed by Siagian and Itti [195]], which is based in Gist and saliency features, implemented in parallel

using shared raw feature channels.
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Table 8: Results for the CityCentre dataset. Precision (Pr) and Recall (Re) columns are expressed as percentages.

Algorithm TP TN FP FN Pr Re

DLoop 249 676 312 100 44.39
FAB-MAP 2.0 216 676 345 100 38.50
DIRD 122 676 439 100 21.75
RTAB-Map 435 676 126 100 77.54
BRIEF-Gist 51 676 510 100 9.10
WI-SURF 24 676 537 100 4.28
WI-SIFT 337 676 224 100 60.10
BINMAP 497 676 64 100 88.59

[=NeoleoBoNoBoNeoX=]

Chapoulie et al. [196] introduced a loop closing algorithm to be used with spherical images. SIFT features
were extracted as local features, while histograms of their distribution over the features space were used as global
features. These representations were combined in a Bayes filter in order to detect loop closure candidates under
outdoor environments.

Wang and Lin presented a combined local and global descriptor for omnidirectional images called Hull Census
Transform (HCT) [[197], which consisted of repeatedly generating the convex hull from the extracted SURF fea-
tures and computing the relative magnitude between these features that compose the convex hull, resulting into a
set of binary vectors. This representation was then used for detecting scene changes, generating a set of topological
node lists. This work was recently expanded by Lin et al. [198] in a new combined descriptor called Extended-
HTC, where they included color information from the environment, encoded as color histograms, as well as the
structure information of the convex hulls, computed by means of the centroid of the features and the total distance
between any two feature point locations.

A location recognition system which combined edges, local features and color histograms was proposed by
Wang and Yagi [199]. The image description process was computed in an integrated way: the Harris detector was
used to obtain both edges and interests points, while SIFT algorithm was used for describing interest points.

Recently, Korrapati et al. [200] presented a hierarchical mapping model which organized images into a topo-
logical map using the Vector of Locally Aggregated Descriptors (VLAD), where the quantization residues of the
local features descriptors, such as SURF, were combined into a single descriptor. This allowed them to create
maps containing over 11,000 images and a decent amount of frames per second. In a more recent work [201], they
also proposed a hierarchical topological mapping algorithm using a sparse node representation where Hierarchical

Inverted Files (HIF) were employed for an efficient two-level map storage.

6. A comparison between different approaches

By way of example of the performance achievable by the approaches surveyed in this paper, this section
compares a selection of the solutions described in the previous sections. In particular we focus on their ability
to close loops since this functionality is key for building a map. The solutions considered are the following:
DLoop [159,[160]], FAB-MAP 2.0 [150L[151], DIRD [44], RTAB-Map [173.[174], BRIEF-Gist [31]], WI-SURF [43]],
WI-SIFT [43] and BINMAP [178]]. In the previous list, DLoop is the solution proposed by Galvez-Lopez and Tardos
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Figure 2: Precision-recall curves for the CityCentre dataset.

Table 9: Results for the NewCollege dataset. Precision (Pr) and Recall (Re) columns are expressed as percentages.

Algorithm TP TN FP FN Pr Re

DLoop 172 660 241 100 41.65
FAB-MAP 2.0 217 655 201 100 5191
DIRD 186 660 227 100 45.04

RTAB-Map 478 539
BRIEF-Gist 118 660
WI-SURF 81 660
WI-SIFT 205 660
BINMAP 220 656

56 100 89.51
295 100 28.57
332 100 19.61
208 100 49.64
193 100 53.27

S o oo oo OoCO

in [159.1160], while BINMAP corresponds to a recent binary approach proposed by Garcia-Fidalgo and Ortiz [178].
For the first four approaches, we have used the code provided by the authors in their respective websites. The other
algorithms have been implemented by ourselves following the guidelines indicated in the corresponding papers.
More precisely, for implementing BRIEF-Gist, the image is split into two patches, each patch is resized to 60x60
pixels, a keypoint is defined at the center of each patch and a BRIEF descriptor is computed for each patch. The
final image descriptor is built concatenating the two previous binary descriptors and the similarity between images
is calculated using the Hamming distance. WI-SURF and WI-SIFT have been implemented in a similar way, except
for the descriptor itself, which is SURF or SIFT respectively, each patch is downsampled to 128 x 128 pixels and
the Euclidean distance is used for similarity calculation. We have tested several sizes for the BRIEF and SURF
descriptors, and have concluded that best results are obtained using BRIEF-64 and SURF-128. The results shown
in this section corresponds to the aforementioned sizes.

We evaluate each approach using two outdoor urban datasets, published for the validation of the original FAB-
MAP [147] algorithm. The City Center and the New College datasets comprise, respectively, 1237 and 1073

pairs of images of 640x480 pixels each taken by the left and right cameras mounted on a robot while it travels
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Figure 3: Appearance-based loop closure results for the CityCentre dataset. GPS positions of the images are plotted with a black dot. Wherever
an image closes a loop with another image, both are labelled with a red dot and linked with a green line. Top-left image shows the ideal path
that should be obtained if all the loops present in the dataset were detected.

3
3

through the environment. Since the approaches under study have been developed to be used with monocular
cameras, we have merged the left and right frames giving rise to 1280x480 pixel images. The first dataset was
recorded to validate the ability of a system for matching images in the presence of scene changes, while the
second one was recorded because of its high perceptual aliasing conditions. All experiments were performed on a
desktop computer fitted with an Intel Core i3 at 2.27Ghz processor and 4GB of RAM memory. In order to obtain
global performance measures, each dataset is provided with a ground truth, which indicates, for each image in
the sequence, which other images can be considered to close a loop with it. The assessment against this ground
truth has been performed counting for each sequence the number of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN), where positive is meant for detection of loop closure. Then, the two

following metrics are computed:

e Precision. Ratio between real loop closures and total amount of loop closures detected (%) .

e Recall. Ratio between real loop closures and total amount of loop closures existing in the sequence (TFZF%) .

For mapping and localization, it is essential to avoid false positives, because it may induce the algorithm to

produce inconsistent maps. By definition, if no false positives are detected, the precision reaches 100%. Then, in
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Figure 4: Precision-recall curves for the NewCollege dataset.

this comparison we are interested in finding the best recall than can be achieved at 100% of precision using each
approach.

The precision-recall curves for the CityCentre dataset are shown in Fig.[2] Each curve was plotted modifying
the key parameter for loop acceptance of the corresponding algorithm. For an easier understanding of the curves,
the best results for a 100% of precision are shown in Table [8| As can be seen in the figure, the area under the
curve (AUC) of the BINMAP approach is higher than the corresponding value for the other solutions, followed by
RTAB-Map and WI-SIFT. It is surprising the results of the latter given its simplicity and the results that other whole
image descriptors present, such as BRIEF-Gist and WI-SUREF. For the case of DIRD, it was impossible to obtain
a higher recall. This algorithm is very conservative and generates a high number of false negatives, limiting the
growth of the recall metric. Note that the performance of RTAB-Map is intentionally related to the computational
resources of the machine where it is executed, since the transition of words between the different memories is
governed by the processing time, what can affect the loop closure detection performance.

Given the results presented in Table [8] Fig. [3] shows navigation results obtained from running each algorithm
for the CityCentre dataset. In the figure, the GPS coordinates available for each image of the dataset are used
to spatially plot the images using black dots. When a loop closure is detected, images representing this loop are
labelled in red and are linked with a green line. The first image of Fig. 3| shows the ground truth, i.e. the ideal path
that should be obtained if an approach detects all the loops present in the dataset.

For the NewCollege dataset, the precision-recall curves and the best results at 100% of precision are shown,
respectively, in Fig. d]and Table[9] In this case, RTAB-MAP presents the best performance according to the AUC.
The efficiency of BINMAP decreases for this dataset, being its curve under WI-SIFT and FAB-MAP 2.0. DIRD

achieves a higher recall for this case, but it is still difficult to get more recall. The navigation results are shown in

Fig.[5
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Figure 5: Appearance-based loop closure results for the NewCollege dataset. GPS positions of the images are plotted with a black dot.
Wherever an image closes a loop with another image, both are labelled with a red dot and linked with a green line. Top-left image shows the
ideal path that should be obtained if all the loops present in the dataset were detected.

7. Discussion and conclusions

In the last decades, there has been a significant increase in the number of visual solutions for topological
mapping and localization because of the low cost of cameras and the richness of the sensor data provided. This
paper surveyed the main approaches emerged in the last 15 years. We identified that these works can be classified,

70 according to the method used for representing the image, into four main categories:

e methods based on global descriptors, where the image is represented by a general descriptor computed using

the entire visual information as input;

e methods based on local descriptors, where interest points are found in the image and then a patch around

this point is described in order to identify them in other images;

705 e methods based on the BoW algorithm, where local features are quantized according to a set of feature models

called visual dictionary, representing images as histograms of occurrences of each word in the image; and

e methods based on combined descriptors, where several techniques described above are used together as a

new solution.
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Table 10: Advantages and disadvantages of each method. More ’+’ means better performance regarding the corresponding attribute.

Feature Global Descriptors  Local Features BoW Schemes
CPU Needs * % % * *%
Storage Needs K % % * *%
Matching Complexity ok * * %
Discrimination Power * * % ok Kk
Perceptual Aliasing Effect * * K ok *%
Large-Scale Operation ok * * % %
Spatial Loss Information *ok * % % *

Pose Recovery Complexity * * % % *%

The main advantages and disadvantages of each method are summarized in Table [I0] All these methods are
active research areas and authors publish continuously solutions for mapping, localization or SLAM facing the
problem from the point of view of these approaches.

In this work, we consider that a topological node of a map is a unique place of the robot’s environment that can
be represented by its appearance. For this reason, pose-graph SLAM solutions, that consider the environment as a
graph of poses, have been considered out of the scope of this paper. Nevertheless, we do have included works that
make use of hybrid metric-topological maps.

Regarding the different categories of methods enumerated above, global descriptors are normally very fast to
compute, favouring the matching process between the images and reducing the computational needs of mapping
and localization tasks. As a main disadvantages, they offer less robustness to occlusion and illumination effects,
what results in a lower discriminative power and an increment of the perceptual aliasing effect, where different
places can be perceived as the same. They have been used intensively in other related research areas, such as scene
categorization.

Local features are usually more robust to occlusions and changes in scale, rotation and illumination. These
methods start with a detection phase, where interest points are found in the image, and are followed by a description
phase, where some measures are extracted from the surroundings of these keypoints. Local features present a better
discrimination capacity, resulting into higher recognition rates and less detection errors. Furthermore, the recovery
of relative poses between images, which can be used for confirming if two images come from the same scene,
can be performed easily. However, the storage requirements and the computational cost are higher than for global
descriptors and the matching process is also more complex, since sometimes each query descriptor requires to find
their closest neighbour within a large set of features. According to the surveyed works, the most used feature is
SIFT, followed by SUREF, both representing features as vectors of floating point numbers. Recently, a number of
binary descriptors have been proposed in the literature, providing an interesting research line to explore regarding
topological mapping and localization, because they are cheaper to compute, compact to store and faster to compare.

While global descriptors and local features demonstrate useful approaches for robot mapping and localization,
they do not result to be satisfactory when the number of images to process is high. Matching hundreds of images
using local features can take a long time when trying to associate the current frame with every previously seen
location. Indexing structures can be used to accelerate the search. However, with a high number of descriptors,

memory problems and computational bottlenecks appear. Global descriptors are easier to compute and save stor-
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Table 11: Advantages and disadvantages of methods for generating visual dictionaries in BoW schemes.

Feature Offline  Online
Training Phase Yes No
Scenario Specific No Yes
Incremental Memory No Yes
Feature Management No Yes
High Sizes Yes No

age space, but sacrificing discriminative power which reduces the performance of the solution. In this case, an
alternative approach for describing and matching images is the Bag-Of-Words (BoW) algorithm, which can effi-
ciently index a huge amount of images incorporating a hierarchical scheme and an inverted index structure. Due
to this fast image retrieval, works classified in this category are mainly SLAM approaches. As main limitation,
it can be mentioned the fact that the effect of perceptual aliasing worsens due to the quantization process, the
presence of noisy words due to the coarseness of the vocabulary construction method and the loss of the spatial
relations between the words. Some authors have proposed several improvements in order to overcome this last
drawback [[157, 202].

The visual dictionaries can be generated offline or online. As a main shortcoming, the offline approaches need
a training phase, where sometimes millions of descriptors have to be clustered. This can take hours, depending
on the number of images and the clustering technique used. Furthermore, the robot can operate in an environment
with an appearance totally different to the training set employed for generating the dictionary, which implies that it
is not representative of the scenario, augmenting false detections. An alternative is to build the codebook online in
an incremental manner, while the robot is navigating across the environment. However, this implies inserting and
deleting features to/from the dictionary, limiting its possible size. An interesting study about the reuse of visual
dictionaries and their universality is presented by Hou et al. [203]]. Nowadays, despite several approaches have
been proposed, managing efficiently online visual dictionaries for BoW schemes can be considered as a topic of
interest. Another interesting issue is long-term mapping, in order to manage maps during long periods of time
under changes in the appearance of the environment. The main advantages and limitations of each dictionary-
generation approach are summarized in Table [T}

Although there is no consensus on how to evaluate the performance of the different approaches, a number
of datasets have been made public for algorithm benchmarking purposes. Some of them are enumerated in the

appendices.

AppendixA. Datasets

e RawSeed:

http://www.rawseeds.org/home/

e Lip6:

http://cogrob.ensta-paristech.fr/loopclosure.html
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Oxford:
http://www.robots.ox.ac.uk/~mobile/IJRR_2008_Dataset/

http://www.robots.ox.ac.uk/NewCollegeData/

Crowded Canteen:

http://haselab.info/papers/crowded_canteen_dataset_31-05-2011.zip

University of Sherbrooke:

https://introlab.3it.usherbrooke.ca/mediawiki-introlab/index.php/RTAB-Map

University of Alberta:

http://webdocs.cs.ualberta.ca/~hajebi/datasets/

Radish:

http://radish.sourceforge.net/

COLD COsy Localization Database:

http://www.cas.kth.se/COLD/

KTH-IDOL.:

http://www.cas.kth.se/IDOL/

LIBVISO2:

http://www.cvlibs.net/datasets/karlsruhe_sequences/

KITTI Dataset:

http://www.cvlibs.net/datasets/kitti/

St. Lucia:

https://wiki.qut.edu.au/display/cyphy/UQ+St+Lucia

Ford Campus:

http://robots.engin.umich.edu/SoftwareData/Ford

Malaga Parking Dataset:

http://www.mrpt.org/downloads/dataset2009/

Malaga Urban Dataset:

http://www.mrpt.org/MalagaUrbanDataset

Omni Zaragoza:

http://robots.unizar.es/omnicam/
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