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Abstract— Image mosaicing has gained increasing attention
in the last few years, specially for robotic mapping applications.
Due to the richness of the sensor data provided, several science
fields require the creation of large-area image mosaics for
further analysis. In this paper, we propose a novel and generic
image mosaicing approach that can produce seamless compos-
ites under different configurations in a reasonable amount of
time. Our approach is based on a multi-threaded architecture
which allows us to execute the different steps of the algorithm
simultaneously. To find the topology of the environment, we use
a visual index based on a Bag-of-Binary-Words scheme, which
is built in an online manner, and thus avoids the classic training
step. Our approach is validated under different environments
and camera configurations, showing that it can be used on
several scenarios producing coherent results. Furthermore,
the implementation of the algorithm is made public to the
community.

I. INTRODUCTION

Robots are becoming more important for automating tasks,

specially in places that present a difficult access for humans.

In this regard, several platforms have been recently proposed

for vessel inspection [1], [2], underwater surveying [3]–[8] or

aerial mapping [9]–[11], where the operating conditions can

be dangerous for human intervention. In the last decades,

cameras have been widely used for collecting information

from the environment, due to their low cost, the richness of

the sensor data provided and the availability of cheap power-

ful computers. When a robot is equipped with a camera, it is

usually of interest to obtain a large visual representation of

the operating area, which can be used for close-up inspection,

for localization and even for navigation tasks. Since the field-

of-view of conventional cameras is limited, image mosaicing

techniques have been developed for building a larger view of

the surveyed area. Mosaicing is then defined as the process

of stitching images together to provide a wide-area image of

the scene.

One of the key steps for image mosaicing is the estimation

of the topology. The quality and the time needed to obtain

the final topology are directly related to the method used

for describing images and the ability for finding overlapping

pairs. With regard to image description, most part of the

existent image mosaicing approaches make use of SIFT [12]
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or SURF [13], due to their invariance properties to illumi-

nation, scale and rotation changes. However, recently there

has been a growing interest in the development of binary

descriptors, such as BRIEF [14], ORB [15], BRISK [16]

or LDB [17], which are faster to compute and require less

storage space. In order to detect the existent relationships

between images, if no other source of information is present,

a frame-to-frame comparison approach can be used only

when the number of images is low. As it grows, this approach

becomes unfeasible and an indexing scheme is needed for

searching overlapping pairs in an efficient way. The Bag-

of-Words (BoW) approach [18], commonly used for image

retrieval, is of application here. However, despite its good

results, this technique presents several drawbacks that can

affect the global performance of a mosaicing algorithm, such

as the training step.

Image mosaicing has drawn attention of the robotics com-

munity some years ago, specially for mapping areas using

down-looking cameras, as the most part of the approaches

presented so far. However, it is less usual to find solutions

that make use of forward-looking cameras, as presented in [3]

for underwater environments and in [2] for a Micro-Aerial

Vehicle (MAV). Furthermore, image mosaicing algorithms

are usually validated to work in only one environment.

In this paper, we propose a novel image mosaicing

approach, named BIMOS (Binary descriptor-based Image

MOSaicing), which can produce seamless mosaics on dif-

ferent scenarios and camera configurations in a reasonable

amount of time. More precisely, we introduce a multi-

threaded architecture for image mosaicing that allows us

to decouple the strategic steps involved in the mosaicing

process, speeding up the time required to estimate the final

topology. To find overlapping candidates, we employ a binary

visual dictionary [19], which is based on a BoW scheme that

is built in an online manner. Our approach takes advantage of

the use of the ORB detector and descriptor [15] to accelerate

the image description process.

In our previous work [2], we presented an image mosaic-

ing approach to work with sequences of images captured

by a MAV. The resulting mosaics were then used during

a vessel inspection process. In this work, we go a step

further presenting a more generic mosaicing approach based

on a multi-threaded architecture and a new image selection

policy, which makes the current solution even faster than our

previous work, as will be shown in the results. Furthermore,

we evaluate our algorithm in several environments to validate

that it can be used in different scenarios and using several

camera configurations. As an additional contribution, we



release the code of BIMOS as a ROS (Robot Operating

System) node1 so that other researchers can use it.

The rest of the paper is organized as follows: Section II

describes our approach for indexing images, which is used

for detecting overlaps between images, Sections III and IV

describe our mosaicing approach, Section V reports the

experimental results obtained, and Section VI concludes the

paper.

II. SEARCH FOR OVERLAPPING PAIRS

As mentioned above, finding the existent relationships

between the images of the sequence is of prime importance

for the correct estimation of the topology. If we want to

avoid an image-to-image approach, we need a fast and

efficient method to determine overlapping image pairs. Image

retrieval methods developed recently are based on the BoW

approach [18]. Despite its good performance, this technique

presents several drawbacks, since it usually needs a training

phase, and the generated visual dictionary can be non-

representative for all environments. Furthermore, most BoW

approaches for image indexing are usually based on real-

valued descriptors [12], [13] and is less common to find

binary solutions [20]. In this work, we employ a method

for computing a vocabulary of binary features that can be

built online, avoiding thus the training phase. This method,

called OBIndex (Online Binary Index)2, is used as a base in

our approach to estimate the topology of the environment.

The algorithm is briefly reviewed next for completeness. For

further details, the reader is referred to [19].

Our method is built over on an incremental visual dic-

tionary based on a modified version of Muja and Lowe’s

approach [21]. The dictionary is combined with an inverted

index, which contains, for each visual word, a list of images

where it was found.

Since our approach relies on an incremental visual dic-

tionary based on binary features, an updating policy for

combining binary descriptors is needed. Averaging each

component of the vector is an option for real-valued descrip-

tors, but it cannot be considered for the binary case. OBIndex

uses a bitwise AND operation. Formally, being B a binary

descriptor:

Bt
wi

= Bt−1
wi

∧Bq , (1)

where Bt−1
wi

is the binary descriptor of the word wi stored in

the dictionary at time t− 1, Bq is the query descriptor and

Bt
wi

is the merged descriptor for word wi at time t. This

policy is inspired by the observation that each component

of a binary descriptor is usually set to 1 or 0 according to

the result of a comparison between a pair of image pixel

intensities. If the i-th bit is the same in both descriptors,

it means that the result of this comparison between the

pixel intensities was the same in both images. Otherwise,

we experimentally prioritize the use of the zero value by

means of the AND operation.

1http://github.com/emiliofidalgo/bimos
2http://github.com/emiliofidalgo/obindex

The index is initially built using the descriptors of the

first image as visual words. When a new image needs to

be added to the index, their descriptors are searched in the

index. Given a query binary descriptor, we search for the two

nearest neighbours traversing the tree from the root to the

leafs and selecting at each level the node that minimizes the

Hamming distance. Using these two neighbours, we apply

the ratio test [12] using a threshold of 0.8 to determine if

both descriptors represent the same visual feature. If positive,

the query descriptor and the visual word are merged using

(1) and the latter is replaced in the dictionary. Otherwise,

the query descriptor is considered a new feature and is

added to the index as a new visual word. In both cases, the

inverted index is updated accordingly, adding a reference to

the current image in the list corresponding to the modified or

added word. Given the features of a query image as input,

OBIndex returns an ordered list of images according to a

scoring process based on Term Frequency Inverse Document

Frequency (TF-IDF) weighting [22].

III. MOTION ESTIMATION

Once two images have been detected as an overlapping

pair, the alignment between them is determined. The model

employed to estimate the image motion plays a key role in

the image registration process. BIMOS assumes that either

the scene is planar or the distance from the camera to the

scene is high enough so as to neglect the depth changes. It is

also assumed that the camera is more or less perpendicular

to the scene and at a more or less constant distance.

Under these conditions, two overlapping images Ii and Ij
are related by a homography, a linear transformation repre-

sented by a 3×3 matrix iHj such that pi =
iHj pj , where

pi and pj are two corresponding points from, respectively,

Ii and Ij , expressed in homogeneous coordinates. Despite

BIMOS can deal with affine transformations (six degrees of

freedom), we approximate the motion of the camera by a

simpler model using a similarity transformation, which has

four degrees of freedom comprising rotation, translation and

scaling. iHj is expressed as:

iHj =





s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1



 =





a −b c

b a d

0 0 1



 , (2)

where s is the scale, θ the rotation angle and (tx, ty) the

translation vector. The estimation of any of these homo-

graphies starts by matching corresponding points between

images. Maximum Likelihood Estimation Sample Consensus

(MLESAC) [23] is next used as a robust estimation algorithm

to minimize the reprojection error for (2) and discard outliers.

Finally, for the case of a path of images Ii, Ik1
, . . . , Ikm

, Ij ,

the associated transformation that relates frames Ii and Ij
can be computed by concatenating the corresponding relative

homographies iHj =
iHk1

k1Hk2
. . . km−1Hkm

kmHj .

IV. IMAGE MOSAICING USING BINARY DESCRIPTORS

In this section, we describe BIMOS, whose architecture is

outlined in Fig 1. Inspired by ORB-SLAM [24], the system
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Fig. 1. BIMOS architecture. The four threads (in light blue) interact with
a shared structure called mosaic graph (in light green). The arrows indicate
the main actions performed between the different components. See text for
further details.

consists of four threads that run in parallel, each one in

charge of a strategic step of the algorithm. This configuration

allows us to decouple the execution of the different parts of

BIMOS, reducing the time needed to generate a mosaic. All

threads interact with a shared structure called mosaic graph,

which is used to manage the topology of the environment

and the synchronization mechanisms between threads. The

keyframe selector thread, which is the entry to the system,

describes the input images and decides if they should be

part of the final composite. The loop closer thread detects

overlapping image pairs and the optimizer thread reduces

the global misalignment in the graph performing a bundle

adjustment process. Finally, the blending thread is responsi-

ble for generating the final image mosaic. BIMOS is ready

to work online using a ROS topic through which it processes

images on demand, contrary to most mosaicing algoritnms,

which work offline. In the following sections, we describe

the building blocks of BIMOS.

A. Mosaic Graph

The topology of the environment represents the relation-

ships that exist between the images conforming the mosaic.

In our approach, the topology is modelled by means of an

undirected graph, where nodes represent a selected set of

images that will be included in the final mosaic and links

represent the overlaps between them. In BIMOS, the selected

images are called keyframes.

The mosaic graph is a key component of BIMOS. It

manages the graph that represents the topology of the en-

vironment and provides mechanisms to ensure the exclusive

access of the different threads to this graph. In order to create

the final mosaic, keyframes need to be aligned according

to a common selected frame, referred to as the mosaic

frame. Then, each keyframe is associated to an absolute

homography MHi, which relates the correspondent keyframe

i with the mosaic frame M . In our previous work [2], the

mosaic frame was selected as the node with the highest

output degree after the graph construction was completed. In

this work, since BIMOS processes images on demand and

the graph is updated as new images arrive, the first keyframe
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Fig. 2. Example of a mosaic graph comprising four keyframes with their
corresponding absolute homographies. The keyframe 0, coloured in green,
is the mosaic frame and, therefore, M

H0 is the identity. The keyframe 3 is
the last one inserted in the graph. The node and the link with the keyframe
2, marked in blue, were added by the keyframe selector thread. The link
with the keyframe 0, marked in red, was added by the loop closer thread
after detecting an overlap between the images. The optimizer thread will
tune the absolute homographies of the graph.

is always selected as the reference frame of the mosaic. Its

absolute homography is thus the identity matrix. Each link

is also associated to a relative homography, which will be

used during the pose-graph optimization step.

Several threads of the system modify concurrently the

mosaic graph: the keyframe selector thread inserts new

keyframes in the graph, the loop closer thread links

keyframes as it detects overlapping image pairs and the

optimizer thread globally adjusts the absolute homographies
MHi. The mosaic graph structure and its use are illustrated

in Fig 2.

B. Keyframe Selection

This component is responsible for describing the input

images and deciding which ones are useful for building the

final mosaic. First of all, the ORB [15] algorithm is used

to detect and describe a set of keypoints in the image. We

use ORB due to its good tolerance to rotations [24], instead

of FAST [25] and LDB [17] as in our previous solution [2].

However, note that BIMOS is descriptor-independent and any

detector-descriptor combination including a binary descriptor

can be used. Besides, to favour accurate estimation of

the image transformations, a minimum number of features

(3000) is requested to be found, and they are required to

cover the full image in a more or less uniform way defining

a 4×4 regular grid over the image.

Instead of using all the input images, we apply a keyframe

selection policy in order to discard images which are not

deemed to provide a significant contribution to the mosaic,

avoiding unnecessary drift during the alignment process. This

contribution is measured as the amount of overlap between

the current image and the last keyframe inserted in the

graph, so that the higher the overlap the less relevant is the

image. More specifically, we compute the homography kH∗

i

between the current image i and the last inserted keyframe k.

Given the resulting set of inliers, we obtain the coordinates

of the corresponding points in each image. We then calculate

the minimal up-right bounding rectangle for each point

set, formally rj for image j, and, next, we evaluate the

percentage of overlap that this bounding rectangle represents



in the image. This overlap is expressed as follows:

Oj =
area(rj)

wj × hj

, (3)

where the function area(·) computes the area of the bounding

rectangle and wj and hj are, respectively, the width and the

height of image j in pixels. In order to take a final decision,

the overlap between the images is computed as:

kOi = min(Ok, Oi) . (4)

Then, if the number of inliers is higher than a threshold

τin and kOi is higher than another threshold τov , the current

image i is stored as a potential keyframe. Otherwise, the

last potential keyframe found is added to the mosaic graph,

and the transformation from the current image to the new

keyframe is recomputed. This policy allows us to ensure

that, despite we are discarding several images, there exists

a minimum overlap between consecutive keyframes and the

topology is not broken in different parts.

When an image i is added as keyframe into the mosaic

graph, it is linked with the previous keyframe. The link is

associated to the computed homography kH∗

i and the abso-

lute homography is initialized concatenating the homography

of the previous keyframe with kH∗

i . Then, following the

notation used in this paper, if the image i is added as the

keyframe k + 1 in the graph, kH∗

i becomes kHk+1 and,

consequently, the initial absolute homography can be written

as:
MHk+1 = MHk

kHk+1 . (5)

C. Loop Closing

This thread detects which keyframes close a loop with

previously added keyframes. To this end, we use our indexing

scheme explained in Section II. This component maintains

an instance of OBIndex, which indexes all the keyframes

defined up to the current time. When a new keyframe is

received, it is searched in the index, obtaining a list of can-

didates sorted from highest to lowest visual similarity. Next,

each candidate is evaluated in descending order, computing

the homography with the current keyframe. If the number

of resulting inliers is higher than a certain threshold, a link

between the corresponding keyframes is incorporated into

the graph. Otherwise, the process finishes and, if exists, next

keyframe is processed.

Since consecutive images are linked by default, we want

to find overlapping pairs at farther distances, which is of

prime importance during the optimization step. To achieve

this, keyframes are not directly indexed as soon as they

are processed. Instead, a buffer is used to store the most

recent keyframes, delaying their publication as overlapping

candidates for the following processed keyframes.

D. Optimization

Despite the efforts for accurately estimating the topology,

alignment errors still arise, resulting into globally inconsis-

tent mosaics. To correct this problem, this component is in

charge of performing a bundle adjustment step to jointly

minimize the global misalignment induced by the current

absolute homographies. The error function is defined as

follows:

ǫ =
�

i

�

j

n
�

k=1

�pki − (MHi)
−1 MHj p

k
j � + R(MHj)

�pkj − (MHj)
−1 MHi p

k
i � + R(MHi) ,

(6)

where i and j are two images related by a link, n is the

total number of resulting inliers when computing the related

homography, (pki , p
k
j ) are the corresponding points for the

inlier k, MHi and MHj are the absolute homographies for,

respectively, images i and j, and R(MHi) and R(MHj) are

regularization terms. These terms prioritize homographies

with scale closer to 1 during the optimization, since BIMOS

assumes that the camera moves at a more or less constant

distance from the scene, and are defined as follows:

R(MHi) = γ
�

a2 + b2 − 1
�

= γ
�

(s cos θ)2 + (s sin θ)2 − 1
�

(7)

where γ is a regularization factor, s and θ are the, respec-

tively, scale and orientation contained in the homography,

and a and b are defined in (2). To reduce the influence

of outliers, we optimize, instead of (6), a Huber robust

error function h(ǫ) = {|ǫ|2 if |ǫ| ≤ 1; 2|ǫ| − 1 if |ǫ| > 1}.

The system of non-linear equations is solved by means of

the Levenberg-Marquardt algorithm using the Ceres Solver

library3 and the absolute homographies available so far as a

starting point. Usually a few iterations are needed to achieve

convergence.

Differently to our previous solution [2], where the bundle

adjustment step was executed once after the topology estima-

tion phase, in this work a short optimization is executed peri-

odically after the insertion of a certain number of keyframes

in the graph, limiting the optimization to a maximum of 30

seconds and 50 iterations. This parameter is of prime impor-

tance in the performance of the algorithm, since excessive

optimizations may slow down the process. Just before the

blending step, a longer optimization (a maximum of 600

seconds and 1000 iterations) is also performed to finally

adjust the absolute homographies. Note that, despite the

different convergence criteria, both optimizations adjust the

absolute homographies in the whole graph. Instead, a local

optimization could be performed only taking into account

the part of the graph involving a detected loop closure. The

implementation of this feature is proposed as future work.

E. Blending

This last component makes use of the multi-band blending

algorithm [26] to create the final seamless mosaic. As in [2],

this step is an adaptation of the stitching module imple-

mented in the OpenCV library, which includes seam finding

and exposure compensation. In BIMOS, this component runs

as a thread on demand, which permits generating mosaics at

different moments along the process.

3http://ceres-solver.org/



TABLE I

SUMMARY OF THE EXPERIMENTAL RESULTS. TIMES ARE EXPRESSED IN SECONDS AND ERRORS ARE EXPRESSED IN PIXELS.

BIMOS Approach [2]

Ex. Times Rep. Error Ex. Time Rep. Error

Seq Size #Imgs KFs Alig Opt Blend Total Avg Std Total Avg Std

VALLDEMOSSA1 320×180 201 80 14.44 0.42 38.71 53.57 2.25 2.27 187.52 2.71 3.02
VALLDEMOSSA2 1024×768 2504 335 330.07 0.44 2876.21 3206.72 8.08 14.75 9042.95 7.94 10.21

MAV 752×480 137 88 3.69 0.16 21.48 25.33 1.84 1.76 108.64 2.15 2.11
AIR1 800×533 71 32 5.34 0.50 68.65 74.49 4.29 6.61 224.39 4.12 3.24
AIR2 800×533 840 336 106.92 2.66 1008.43 1118.01 6.29 6.76 4766.64 5.94 5.31

V. EXPERIMENTAL RESULTS

We have validated our approach under different operating

conditions using several datasets. The results obtained for

each dataset are summarized in Table I, indicating the size

of the images comprising the dataset (Size), the total number

of images in the input set (#Imgs), the number of keyframes

selected by BIMOS (KFs), the execution times corresponding

to the different phases of the algorithm —global alignment

(Alig), global optimization (Opt), blending (Blend) and the

total time needed to build the mosaic (Total)— and, finally,

the average and standard deviation of the reprojection error

calculated using all the correspondences with the resulting set

of homographies (Avg, Std). Note that the global alignment

time also includes the small optimizations produced during

the estimation of the topology. We also include in the

table the execution time and the reprojection error of our

previous image mosaicing algorithm [2] in order to show

the performance improvement that BIMOS presents against

this solution. All experiments were performed on a desktop

computer fitted with an Intel Core i7 at 4.4Ghz processor

and 32GB of RAM memory.

As a first experiment, we use an underwater dataset

whose images come from the Valldemossa harbour seabed

(Mallorca, Spain) and a hand-held down-looking camera.

The dataset consists of 201 images of 320×180 pixels, which

comprises a large loop, what allows us to validate the ability

of our algorithm for recognizing previously seen places. A

total number of 80 images were selected by BIMOS, leading

to the final mosaic and the topology shown in Fig 3. Despite

the reprojection error is similar to one obtained with our

previous approach, the time needed to complete the mosaic

is only 53.57 seconds in front of 187.52, which implies an

increase of performance of 3.5x regarding the execution time.

The second dataset, also recorded at Valldemossa harbour,

is a more challenging environment in the sense that it

comprises a Posidonia meadow, characterized by a self-

similar texture and vegetation in continuous motion. A total

number of 2504 images were obtained, covering an area of

approximately 400 m2. BIMOS selects 335 as keyframes,

producing the mosaic and the topology shown in Fig 4. As

in the previous experiment, we obtain a coherent mosaic in

less time than our previous approach.

The third dataset was recorded using a MAV designed

for vessel visual inspection [27], which was fitted with a

752×480-pixel/58o-lens uEye UI-1221LE camera running

at 10Hz. Since currently we do not have access to a real

vessel, we created a canvas of size 2.5×4 meters using
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Fig. 3. (top) Resulting mosaic obtained for the Valldemossa1 dataset.
(bottom) Topology estimated by BIMOS. Each keyframe is indicated using
a red circle, and the mosaic frame is labelled by a green triangle.

images from a real cargo hold of a container ship. Next,

we flew in front of the canvas with the MAV at a more

or less constant distance from the wall (1.5m), performing

a top down trajectory at the central part of the canvas.

Note that due to the more aggressive dynamics of the MAV

and the front-looking camera configuration, this is a more

challenging situation than the Valldemossa dataset. A total

number of 137 images were captured, from where BIMOS

selects 88 as keyframes. As in the previous experiment, the

reprojection error is lower than for our previous approach.

However, the most interesting result has to do with the

execution time of BIMOS, which is, according to our results,

4.3 times faster than our previous algorithm. The resulting

mosaic and the estimated topology are shown in Fig. 5.

As a fourth experiment, we employ an aerial image se-

quence taken at a high altitude. This dataset was taken using

a bottom-looking camera attached to an aerial vehicle [11],

which was controlled manually by an operator. Note that

this is a challenging scenario since the movement of the

vehicle is more aggressive than in the previous cases, what

makes the camera be far from perpendicular to the scene

sometimes. We have considered two sequences from this
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Fig. 4. (top) Resulting mosaic obtained for the Valldemossa2 dataset.
(bottom) Topology estimated by BIMOS. Each keyframe is indicated using
a red circle, and the mosaic frame is labelled by a green triangle.

dataset, comprising, respectively, 71 and 840 images of size

800 × 533 pixels, corresponding to areas covering several

kilometers. Each sequence is identified in Table I as AIR1

and AIR2. The corresponding mosaics and the estimated

topologies are shown, respectively, in Fig 6. and Fig 7. As

in the other experiments, BIMOS is faster than our previous

approach keeping a similar reprojection error.

In general terms, BIMOS is faster than our previous solu-

tion, but still producing coherent mosaics and maintaining

a similar performance according to the reprojection error

measure. The multi-threaded architecture and the keyframe

selection policy can be considered as the main reasons to

this increment of speed. Typically, most of the BIMOS

execution time is invested at the blending step, an external

module adapted to be used in BIMOS, whose seam finding

algorithm is computationally demanding. We plan to make
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Fig. 5. (left) Resulting mosaic using the images collected by a MAV.
(right) Topology estimated by BIMOS. Each keyframe is indicated using a
red circle, and the mosaic frame is labelled by a green triangle.
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Fig. 6. (left) Resulting mosaic using the AIR1 sequence. (right) Topology
estimated by BIMOS. Each keyframe is indicated using a red circle, and
the mosaic frame is labelled by a green triangle.

our own implementation of this step of the algorithm to

further improve the execution times of BIMOS.

VI. CONCLUSIONS

In this paper, we have described a novel approach for gen-

erating mosaics from images. Our scheme, named BIMOS,

is based on a multi-threaded architecture which allows us

to decouple the different parts of the algorithm, speeding

up the mosaicing process. The topology of the environment

is modeled by means of an undirected graph. To find the

overlapping pairs in an efficient way, this graph is created

using a visual index of binary features, which is built online.

We have validated our approach under different operating

conditions, obtaining coherent mosaics in all cases. As a

secondary contribution, the code of BIMOS has been made

public to the community as a ROS node.

As a future work, as said previously, we are interested in

improving the blending component of the algorithm, since it
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Fig. 7. (top) Resulting mosaic using the AIR2 sequence. (bottom) Topology estimated by BIMOS. Each keyframe is indicated using a red circle, and the
mosaic frame is labelled by a green triangle.

is an external code and is the main bottleneck of our current

solution. Finally, to further speed up the process, we plan to

adopt a local optimization strategy instead of adjusting the

whole graph during the global alignment process.
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