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Abstract— Vessel maintenance entails periodic visual inspec-
tions of internal and external parts of the hull in order
to detect the typical defective situations affecting metallic
structures. Nowadays, robots are becoming more and more
important regarding these inspection tasks, since they can
collect the requested information and, thus, prevent humans
from performing tedious, and even dangerous tasks because of
places hard to reach for humans. A Micro Aerial Vehicle (MAV)
fitted with vision cameras can be used as part of an automated
or semi-automated inspection strategy. The resulting collection
of individual images, however, does not permit the surveyor to
get a global overview of the state of the surface under inspection,
apart from the fact that the defects can be separated into
different consecutive images. Image mosaicing can certainly
help in this case. To this end, in this paper, we propose a
novel image mosaicing approach able to deal with this kind
of scenarios. Our solution employs a graph-based registration
method from which relevant topological relationships between
(overlapping) images are found. This graph is built according
to a visual index based on a Bag-of-Words (BoW) scheme
making use of binary descriptors for speeding up the image
description process. At the end of the paper, we report about the
results of a number of experiments that validate our approach,
including the outcome of defect detectors working directly over
the mosaic.

I. INTRODUCTION

Vessels represent one of the most common ways of trans-

port around the world. Despite these ships do not normally

suffer important maritime accidents, sometimes they occur-

with catastrophic consequences. Since the structural failure is

the major cause of shipwrecks, vessels need to be accurately

inspected to ensure their correct structural integrity. Due to

the size of these vessels, the inspection process becomes a

tedious, long task, which nowadays is carried out by human

surveyors. It has to be performed in the shortest time possible

to reduce costs. Besides, the vessel has to be emptied and

situated in a dockyard, where typically temporary staging,

lifts and movable platforms need to be installed to allow

the workers for close-up inspection of the different metallic

surfaces. In addition to the significant heights, the operational

environment can include flammable and toxic gases. Under

these conditions, the survey can become a very hazardous

task for human operation. Furthermore, the total cost of a
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full vessel inspection, which can exceed $1M, is directly

related to the time along which the ship is inoperable.

Robots can be useful for automating the aforementioned

operations, simplifying the inspection task and making it

possible to collect information from places which are hard to

reach for humans. The EU-funded FP7 MINOAS project [1]

developed a fleet of robots to this end. Within this context,

a Micro Aerial Vehicle (MAV) [2] fitted with a flexible set

of cameras was proposed to provide the surveyor with an

overview of the surfaces present in cargo holds. The collected

images where next used as input to several algorithms

capable of detecting different kinds of defects that can affect

metallic surfaces, such as cracks or corrosion. During the

several field tests that took place as part of the MINOAS

project activities, surveyors asked for a better presentation

of the visual data collected. This has been assumed as a

requirement for the INCASS project (follow-up of MINOAS)

in the form of a tool able to provide a global overview of

the surfaces under inspection, so that defects do not appear

broken along several consecutive images and the surveyor

can easily get an overall impression of them.

To this end, in this paper, we propose a MAV-based novel

image mosaicing approach to create seamless composite

images of the area under inspection. Image mosaicing drawn

the attention of the robotics community some years ago,

specially for mapping areas using down-looking cameras, for

e.g. underwater [3]–[8] and aerial/satellite applications [9]–

[12]. However, it is less usual to find solutions that make

use of forward-looking cameras [13], as it is our approach,

which in turn captures the images from a MAV operating at

close distance from the scene (less than 2 meters, since the

surveyor needs to be within arm’s reach from the hull).

More precisely, our solution employs a graph-based reg-

istration method to find relevant topological relationships

between (overlapping) images. Additionally, the graph rep-

resentation allows us to search for the shortest path be-

tween every image and a chosen reference image (i.e. the

mosaic frame), minimizing the number of transformation

compositions required to compute the alignment of images.

To find image overlapping candidates, we employ a binary

visual dictionary [14], which is based on a Bag-of-Words

(BoW) scheme that is built in an online manner. Unlike most

image mosaicing solutions, which make use of SIFT [15] or

SURF [16] to describe images, our approach takes advantage

of the use of the FAST corner detector [17] combined with

the LDB binary descriptor [18] to speed up the description

process. In order to illustrate the usefulness of our approach

during vessel inspections, we have provided a defect detec-



Fig. 1. An example of a cargo hold of a container ship.

tor [19] with the outcome of the mosaicing process. The

resulting performance is discussed at the end of the paper

The rest of the paper is organized as follows: Section II

describes the conditions under which the images are cap-

tured, Sections III and IV describe our mosaicing approach,

Section V reports the experimental results obtained, and

Section VI concludes the paper.

II. OPERATING CONDITIONS

This section describes the conditions under which the

images for the mosaicing are captured during a typical

inspection task, as well as the typical image content, since

they both define the complexity of the image mosaicing

process. In our case, we consider container ships, i.e. vessels

that carry all of their load in truck-size intermodal containers

stacked in cargo holds. The vertical structures that can be

found in these holds are of prime importance. To make

proper repair/non-repair decisions, the surveyor must be

provided, among other kinds of input, with imagery detailed

enough so as to enable the remote visual assessment of

these structures.During the inspection process, the platform

sweeps the relevant metallic surfaces and grabs pictures

at a rate compatible with its speed. The areas suspected

of being defective can be re-visited for acquiring close-up

images, taking thickness measurements (by means of other

platforms), or even be compared in a posterior inspection.

Our goal is to create a mosaic using as input the images

obtained during this kind of visual inspection task.

Figure 1 shows an example of cargo hold. As it can

be seen, the walls look globally as more or less planar

surfaces, which in this particular case measure in height

around 15 meters (they can reach up to 20-25 meters).

In order to obtain useful images for visual inspection, the

vehicle needs to fly at short distance from the walls (less than

2 meters). Because of both the fast dynamics of the MAV

and the forward-looking camera configuration, this fact does

not lead to favourable image capture conditions, contrary

to other mosaicing scenarios where the effects of platform

oscillations are attenuated by the distance between camera

and scene, or simply they are negligible.

III. MOTION MODEL

The motion model plays a key role in the image regis-

tration process. In this work, the camera is assumed to be

perpendicular to the scene, which, as said previously, can be

considered more or less planar. Under these conditions, two

overlapping images Ii and Ij are related by a homography, a

linear transformation represented by a 3×3 matrix iHj such

that pi = iHj pj , where pi and pj are two corresponding

points from, respectively, Ii and Ij , expressed in homo-

geneous coordinates. Despite our approach can deal with

affine transformations (six degrees of freedom), the motion

of the vehicle can be approximated by a simpler model

using similarity transformations, which has four degrees of

freedom comprising rotation, translation and scaling. iHj is

expressed as:

iHj =
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where s is the scale, θ the rotation angle and (tx, ty) the

translation vector. The estimation of any of these homo-

graphies starts by matching corresponding points between

images. Maximum Likelihood Estimation Sample Consensus

(MLESAC) [20] is next used as a robust estimation algorithm

to minimize the reprojection error for (1) and discard out-

liers. Finally, given a path Ii, Ik1
, . . . , Ikm

, Ij , the associated

transformation that relates frames Ii and Ij is computed

by concatenating the corresponding relative homographies
iHj =

iHk1

k1Hk2
. . . km−1Hkm

kmHj .

IV. THE MOSAIC BUILDING PROCESS

A mosaic is created by aligning images according to a se-

lected frame, commonly referred to as the mosaic frame, and

blending them together in a larger composite. This comprises

a sequence of more elementary steps, which, for our ap-

proach, is outlined in Fig. 2. As usual, the process starts with

the description of the images, which in our case is performed

using binary descriptors for efficiency reasons. The next step

discards those images which are not going to contribute

significantly to the mosaic by adopting a keyframe-based

approach. Subsequently, the surviving images are indexed

by means of the computed binary descriptors; this permits,

on the basis of image similarity metrics, to detect relevant

overlap between images [14]. This allows us to estimate the

topological relationships between the different images, from

which we apply bundle adjustment to optimize the image

alignment. Finally, in accordance to the resulting alignment,

the last step produces the mosaic by blending together the

image pixels contributing to the same mosaic pixels.

We use thus a global alignment method in order to

avoid the drift introduced by concatenating homographies

estimated from consecutive frames, although at some steps

we perform pairwise alignment. In our case, to implement

this global alignment process, we use exclusively visual

information, from which we infer image similarities that sug-

gest significant overlap between images, either consecutive



or non-consecutive in the image sequence. Since a frame-

to-frame comparison approach easily becomes unfeasible as

the number of input images grows, we index every image

using binary descriptors. This index is used next to deter-

mine the similarity between images and establish topological

relationships between them. From this, we build a graph

structure which allows us to find the shortest paths between

the mosaic frame and any other image [7], [21], [22], in

order to reduce the number of transformation compositions

and further improve the alignment of every frame with the

mosaic. Bundle adjustment follows next on the basis of the

data finally available in the graph structure.

The following sections detail the aforementioned steps:

1) Image Description: This step computes a compact

representation of every image as a collection of FAST fea-

tures [17] described each by an LDB binary descriptor [18].

This allows us to take advantage of their faster computation

times and reduced storage needs, in front of the classic

approaches used previously in image mosaicing such as

SIFT [15] and SURF [16]. Besides, to favour accurate es-

timations of the image transformations, a minimum number

of features (3000) is requested to be found, and they are

required to cover the full image in a more or less uniform

way. To this end, a 4×4 regular grid is defined over the

image and around 190 features are expected from each cell.

In order to ensure this minimum number of features, the

detector is allowed to iterate around the feature detection

parameters until the requested number of features is avail-

able. To reduce the number of iterations, the contrast of the

sequence is globally improved by transforming each image

to HSV space, computing the V-channel histogram for the

full set of images, deriving an intensity look-up table (LUT)

that stretches this histogram, and finally transforming each V-

level at each image according to the computed LUT, together

with going back to the RGB colour space.

2) Image Selection: This step discards images which

are not deemed to provide a significant contribution to the

mosaic in order not to introduce unnecessary drift during

the alingment process. This contribution is measured as the

amount of overlap between the current image and a previous

image considered as a keyframe, so that the higher the

overlap the less relevant is the image. More specifically, we

compute the homography between both images, warp the

four corners of the current image onto the keyframe, take

the maximum distance between each pair of corresponding

corners and discard the frame if this distance is below a

certain threshold. In order to relate the magnitude of the

camera motion to the size of the input images, the distance

and the threshold are normalized by the maximum of the

horizontal and vertical image sizes.

3) Image Indexing: The goal of this step is to build

an image index for, given a query input, finding similar

images. This index, inspired by image retrieval methods,

is an efficient way to determine overlapping image pairs.

Image retrieval methods developed recently are based on

the BoW approach [23]. Despite its good performance, this

technique presents several drawbacks, since it usually needs

a training phase, and the generated visual dictionary can be

non-representative for all environments. Furthermore, most

BoW approaches for image indexing are usually based on

real-valued descriptors [15], [16] and is less common to find

binary solutions [24]. In this work, we employ a method for

computing a vocabulary of binary features that can be built

online, avoiding thus a training phase. A brief overview can

be found next (the interested reader is referred to [14] for

the details).

Our method is based on an incremental visual dictio-

nary based on a modified version of Muja and Lowe’s

approach [25]. The dictionary is combined with an inverted

index, which contains, for each word, a list of images where

it was found.

Since our approach relies on an incremental visual dictio-

nary based on binary features, an updating policy for combin-

ing binary descriptors is needed. Averaging each component

of the vector is an option for real-valued descriptors, but

it cannot be considered for the binary case. We propose to

use a bitwise AND operation. Formally, being B a binary

descriptor:

Bt
wi

= Bt−1

wi
∧Bq , (2)

where Bt−1

wi
is the binary descriptor of the word wi stored in

the dictionary at time t− 1, Bq is the query descriptor and

Bt
wi

is the merged descriptor for word wi at time t. This

policy is inspired by the observation that each component

of a binary descriptor is usually set to 1 or 0 according to

the result of a comparison between a pair of image pixel

intensities. If the i-th bit is the same in both descriptors,

it means that the result of this comparison between the

pixel intensities was the same in both images. Otherwise,

we experimentally prioritize the use of the zero value by

means of the AND operation.

In order to save storage space and computation time, only

a subset of the total features, corresponding to the image

features with higher response, is used for indexing each

image. In our experiments, around 500 features have been

enough to find most of the overlaps. The index is initially

built using the descriptors of the first image. When a new

image needs to be added to the index, their descriptors are

searched in the index. Given a query binary descriptor, we

search for the two nearest neighbours traversing the tree

from the root to the leafs and selecting at each level the

node that minimizes the Hamming distance. Using these two

neighbours, we apply the ratio test [15] using a threshold

of 0.8 to determine if both descriptors represent the same

visual feature. If positive, the query descriptor and the visual

word are merged using (2) and replaced in the dictionary.

Otherwise, the query descriptor is considered a new feature

and is added to the index as a new visual word. In both cases,

the inverted index is updated accordingly, adding a reference

to the current image in the list corresponding to the modified

or added feature. Given the features of a query image as

input, the visual index returns an ordered list of images

according to a scoring process based on Term Frequency

Inverse Document Frequency (TF-IDF) weighting [26].



Fig. 2. Steps performed in our image mosaicing approach.

4) Topology Estimation: The topology of the environment

represents the relationships that exists between the images of

the surveyed area. This topology is modelled by means of

an undirected graph, whose nodes represent the individual

images and edges represent overlaps between them. As a

measure of the quality of a link, an edge between the images

Ii and Ij is labelled with the following weight w:

iwj =

n
∑

k=1

‖pki − iHj p
k
j ‖

n
, (3)

where n is the number of inliers obtained during the compu-

tation of iHj and (pki , p
k
j ) are the corresponding points for

the inlier k.

The construction of the graph relies on the index built

in the previous step, running iteratively for each image.

First, a link is added between the current image and the

next one. Then, the image is queried against the index for

obtaining a list of similar images ordered by their TF-IDF

value, discarding the current image and the next one, since

a link has already been added between them. For the top c

candidates (15 in our experiments), we compute their homo-

graphies with the current frame, and rerank all the candidates

in accordance to the number of inliers. If this number is

higher than a certain threshold (500 in our experiments) and

the images pass an overlap spatial verification step based

on the intersection between the circles circumscribing the

respective warped frames [22], a link between those images

is incorporated into the graph.

Once the graph has been built, all the images are trans-

formed to a common reference frame. This transformation

is performed by means of an absolute homography MHi,

which relates image i with the reference frame. The image

corresponding to the node of the graph with the highest

output degree is selected as the reference or mosaic frame,

whose absolute homography is thus the identity matrix.

Finally, the shortest-path tree (SPT) rooted at the mosaic

frame is found using Dijkstra’s algorithm. For each of the

remaining images, the absolute transformation is computed

by traversing the graph using the shortest path from the

root node to the image, and concatenating the corresponding

pairwise homographies. This allows us to find the absolute

homographies using the minimum number of transformation

compositions for each case.

5) Bundle Adjustment: Despite the efforts for accurately

estimating the images relationships, alignment errors still

arise, resulting into a globally inconsistent map. To correct

this problem, a bundle adjustment step is performed in order

to jointly minimize the global misalignment induced by the

current absolute homographies. The error function is defined

as follows:

ǫ =
∑

i

∑

j

n
∑

k=1

‖pki − (MHi)
−1 MHj p

k
j ‖ + R(MHj)

‖pkj − (MHj)
−1 MHi p

k
i ‖ + R(MHi) ,

(4)

where i and j are two images related by a link which

belongs to the SPT, n is the total number of resulting inliers

when computing the related homography, (pki , p
k
j ) are the

corresponding points for the inlier k, MHi and MHj are

the absolute homographies for, respectively, images i and j,

and R(MHi) and R(MHj) are regularization terms. These

terms prioritize homographies with scale closer to 1 during

the optimization, since we assume that the vehicle flies at a

more or less constant distance from the wall, and are defined

as follows:

R(MHi) = γ
(

a2 + b2 − 1
)

= γ
(

(s cos θ)2 + (s sin θ)2 − 1
)

(5)

where γ is a regularization factor, s and θ are the, respec-

tively, scale and orientation contained in the homography,

and a and b are defined in (1). To reduce the influence

of outliers, we optimize, instead of (4), a Huber robust

error function h(ǫ) = {|ǫ|2 if |ǫ| ≤ 1; 2|ǫ| − 1 if |ǫ| > 1}.

The system of non-linear equations is solved by means of

the Levenberg-Marquardt algorithm using the Ceres Solver

library1 and the absolute homographies available so far as a

starting point. Usually a few iterations are needed to achieve

convergence, resulting into better estimations of the absolutes

homographies.

6) Blending: As a last step, the final mosaic is created

using the multi-band blending algorithm [27] to diminish

the visual artifacts that result from the combination of the

images contributing to the mosaic. This step makes use of

the stitching module implemented in the OpenCV library.

Besides the multi-band blending, this module also includes

seam finding and exposure compensation, which perfectly

suits our needs.

V. EXPERIMENTAL RESULTS

We have validated our approach under different operating

conditions. The experiments are summarized in Table I,

indicating, for each case, the total number of images in the

input set (#Imgs), the total number of images selected by

our algorithm (Sel), the time in seconds needed to create

and blend the mosaic (Time) and the average and standard

deviation reprojection error calculated using all the corre-

spondences with the resulting set of homographies before

optimization (Avg1, Std1) and after optimization (Avg2,

1http://ceres-solver.org/



TABLE I

SUMMARY OF EXPERIMENTAL RESULTS.

Seq #Imgs Sel Time Avg1 Std1 Avg2 Std2

SYNTH 679 331 649.4 62.4 101.5 1.2 2.3
FLIGHT 137 54 108.6 15.2 20.1 2.1 2.0

UNW 201 86 187.5 38.5 72.1 2.7 3.0

Fig. 3. Canvas used in our experiments for simulating a cargo hold wall.

Std2). As shown, the optimization step reduces the global

misalignment of the images, improving the registration of

the images prior to blending the final mosaic. Notice that

our approach is able to build coherent mosaics despite it

discards a high number of frames.

For the experiments, we used the 2.5×4 meter canvas

that can be seen in Fig. 3, which directly comes from

a real wall of a cargo hold of a container ship. Further,

to get more insight on the performance of the mosaicing

approach, we have tested other sequences recorded from

other environments, e.g. underwater, whose results are also

discussed.

In a first kind of experiment, we generated synthetic

sweeping trajectories over a full image of the canvas, intro-

ducing random alterations in scale, rotation and translation,

collecting subimages of size 640×480 from time to time. The

synthetic sequence that Table I refers to as SYNTH comprised

a total set of 679 images which were introduced as input

to the mosaicing algorithm. A subset of 331 images were

selected from the original set. The resulting mosaic can be

found in Fig. 4, while the estimated topology is shown in

Fig 5. As can be seen, the alignment in this case is correct,

generating the original image in a seamless mosaic despite

the the simulated MAV motion.

For a second kind of experiments, we flew in front of

the canvas a real MAV based on the AscTec Hummingbird

platform [28], fitted with a 752×480-pixel/58o-lens uEye UI-

1221LE camera running at 10Hz. Notice that this is a more

challenging situation because of the motion of the MAV at

close distance to the canvas, resulting into a more difficult

Fig. 4. Mosaic resulting from the synthetic sweeping trajectory generated
over the canvas image.

Fig. 5. Topology estimated by our approach for the synthetic sequence.
Each image is indicated using a red circle and the first image is labelled by
a green triangle.



Fig. 6. (left) Mosaic using the images collected by the MAV [mosaic
contrast has been tuned for visualization purposes]. (right) Defective areas
found, shown in black.

image registration problem. The vehicle performed a top-

down trajectory in front of the central part of the canvas at

a distance of 1-1.5 m. A total of 137 images were captured,

from which our algorithm selected a subset of 54 frames

(see line starting by FLIGHT in Table I). The final mosaic

is shown in Fig. 6 (left). As before, good alignment results

are observed, and the defects (corrosion in this case), do not

appear broken, as expected. Indeed, in order to check whether

the mosaic was useful for defect detection, we supplied the

composite image to the defect detector described in [19],

which combines contrast and symmetry information within

a probabilistic framework for corrosion detection. The results

are shown in Fig. 6 (right), where the defects are labelled

in black. As can be observed, the main defective areas are

correctly detected. The estimated topology is shown in Fig. 7.

In order to further validate our mosaicing approach, in a

third kind of experiments, we provided the algorithm with

sequences from other environments. For the particular case

of the sequence referenced in Table I as UNW, the images

come from Valldemossa harbour seabed (Mallorca, Spain)

and a hand-held down-looking camera. The dataset consists

of 201 images of 320×180 pixels, which comprises a large

loop, what allows us to validate the ability of our algorithm

for recognizing previously seen places. A total of 86 images

were selected by the algorithm, leading to the final mosaic

and the estimated topology shown in Fig. 8 and in Fig. 9.

The alignment, in this case, is even better than for the aerial

sequences, since the camera motion is less aggressive and

the image registration process is easier.

Results for more sequences can be found in [29]. They

are not included in this paper due to lack of space.

Fig. 7. Topology estimated by our approach for the flight performed by
the MAV. Each image is indicated using a red circle, and the initial image
is labelled using a green triangle.

Fig. 8. Resulting mosaic obtained for the underwater dataset.



Fig. 9. Topology estimated by our approach for the underwater dataset.
Each image is indicated using a red circle, and the initial image is labelled
by a green triangle.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a novel approach for

generating mosaics from images collected by a MAV, to

be used for vessel visual inspection. Our scheme makes

use of a graph for modeling image relationships, which

allows us to determine the shortest path between each image

and the mosaic frame. This graph is created using a visual

index of binary features which is built online and is used to

obtain, in an efficient way, overlapping candidates according

to the image information. We have validated our approach

under different operating conditions, concluding that the

resulting mosaic can be employed to find defective situations

susceptible to appear in a vessel. Despite the unfavourable

MAV operating conditions during a vessel visual inspection,

our approach works reasonably well, being helpful as part

of an assistance tool suite for surveyors.

As part of the activities of the INCASS project, our future

plans are to finish the validation of our approach onboard a

real vessel. Other kinds of vessels will also be considered.

Finally, we are interested in improving the image registration

process by adopting a local submosaic-based strategy.
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