
"'"·UIB
Nt"

Universitat de les DIes Balears

Departament de Ciencies
Matematiques i Informatica

A Solution for Bayesian Loop Closure Detection
Based on Local Invariant Features

E. GARCIA-FIDALGO and A. ORTIZ

March / 2013 A-01-2013
TECHNICAL REPORT



A Solution for Bayesian Visual Loop Closure

Detection Based on Local Invariant Features

Emilio Garcia-Fidalgo and Alberto Ortiz∗

Abstract

Visual loop closure detection in robotics is de�ned as the ability

of recognizing previously seen places given the current image captured

by the robot. The Bag-of-Words image representation has been widely

used for these kinds of tasks. However, in this paper, an appearance-

based approach for loop closure detection using local invariant features

is proposed. Images are described using SIFT features and, for avoid-

ing image-to-image comparisons, a set of randomized KD-trees are

employed for feature matching. Further, a discrete Bayes �lter is used

for predicting loop closure candidates, whose likelihood is based on

these KD-trees. The approach has been validated using monocular

image sequences from several environments.

1 Introduction

Localization and mapping are essential problems in mobile robotics. In or-
der to solve them, several approaches have been proposed to perform both
tasks at the same time, creating an incremental map of an unknown environ-
ment while localizing the robot within this map. These techniques are called
SLAM [1] (Simultaneous Localization and Mapping). In SLAM, loop closure
detection is a key challenge to overcome. It implies the correct detection of
previously seen places from sensor data. This allows generating consistent
maps and reduce their uncertainty.

Ultrasounds and laser sensors have been used for years for SLAM and
loop closure detection. Nevertheless, in the last decades there has been a
signi�cant increase in the number of visual solutions because of the low cost
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of cameras, the richness of the sensor data provided and the availability of
cheap powerful computers. This naturally guides us to an appearance-based
SLAM, where the environment is represented in a topological way by a graph.
Each node of this graph represents a distinctive visual location visited by
the robot while the edges indicate connectivities between locations. Using
this representation, the loop closure problem can be solved comparing images
directly, avoiding to maintain and estimate the position of feature landmarks.

In the Bag-of-Words (BoW) [2] approach, local invariant features ob-
tained from an image are quantized into a vector according to a visual vo-
cabulary. This representation is one of the most used technique for loop clo-
sure detection in appearance-based SLAM. However, this method presents
some drawbacks. On the one hand, the perceptual aliasing e�ect [3], where
two di�erent places can be perceived as the same, is increased because of the
quantization process. On the other hand, an o�ine training phase is required
to build the visual vocabulary on most occasions.

Loop closure detection can be achieved matching raw features directly [3�
6]. Despite we have developed a visual-based topological SLAM method in
a previous work [7], in this paper we want to focus in the visual loop clo-
sure problem. In more detail, we present a Bayesian framework for visual
loop closure detection using local invariant features. Given a new image ac-
quired with a monocular image con�guration, the probability of loop closure
with all previously seen images is computed. When this probability is above
a threshold, a further condition derived from epipolar geometry is checked
next to con�rm that the current image really closes the loop. Experimental
results in di�erent environments are provided in order to validate the pro-
posed solution. Matchings between images are obtained e�ciently building
a set of randomized KD-trees [6].

The rest of the paper is organized as follows: Section 2 enumerates fun-
damental works related to loop closure detection and visual localization and
mapping, Section 3 shows how images are described and matched in our ap-
proach, Section 4 exposes a Bayesian loop closure algorithm using visual fea-
tures, Section 5 shows experimental results obtained from di�erent datasets
and Section 6 concludes the paper.

2 Related Work

A high number of appearance-based localization and mapping solutions have
been proposed along the last decade. Although many works assume the avail-
ability of omnidirectional images [8�11], many others make use of monocular
con�gurations [6, 12�14]. Our approach belongs to this latter class.



Referring to the image description, the BoW approach has become quite
popular. Cummins and Newman developed FAB-MAP [12], where a Chow-
Liu tree is used for modelling the dependencies between visual words. Angeli
et al. [13,14] extended the BoW paradigm to incremental conditions and re-
lied on Bayesian �ltering to estimate the probability of loop closure. Despite
its well-known general performance, the BoW paradigm is more a�ected by
perceptual aliasing [3]. For this reason, our work follows an approach sim-
ilar to [13, 14], but using local invariant features for image description and
matching.

Other approaches make use of global descriptors, such as Gist [15]. Singh
and Kosecka [16] computed Gist descriptors in omnidirectional images of ur-
ban environments for detecting loop closures. They presented a novel image
matching strategy for panoramas. Bayes �ltering is not considered in this
work. Liu and Zhang [17] applied Principal Component Analysis (PCA) to
Gist descriptors in order to compute the likelihood in a particle �lter. This
�lter is used for detecting loop closures. Siagian and Itti [18] presented a
biologically-inspired system to scene classi�cation using Gist as image repre-
sentation.

Rather than BoW or global descriptors, some authors have used local
invariant features for visual localization and mapping as well as for loop
closure detection. Zhang [3] presented a method for selecting a subset of
Scale-Invariant Feature Transform (SIFT) [19] keypoints extracted from an
image. These features are used for matching consecutive images. A location
is represented by a set of features that can be matched consecutively in
several images. The problem of this approach is that the number of features
to manage increases while new images are added, and a linear search for
matching becomes intractable. This drawback is overcome in [6] indexing
features using a set of randomized KD-trees. Our approach follows these
guidelines for image matching.

3 Image Description and Matching

In our approach, each image is described using the SIFT [19] algorithm, where
interest points are de�ned as maxima and minima of a di�erence of Gaussians
function applied in scale space to a series of resampled images. Each feature
is then described de�ning a histogram of gradient orientations around the
point at the selected scale, resulting in a 128-dimensional descriptor. These
descriptors are compared in this work using Euclidean distance.

A method for an e�cient nearest neighbour search is needed in order to
match these high-dimensional descriptors. Tree structures have been widely



used to this end, since they reduce the search complexity from linear to
logarithmic [6]. To the same purpose, we maintain a set of randomized
KD-trees containing all the SIFT descriptors of previously seen images. An
inverted index, which maps each feature to the image where it was found, is
also created. Given a query descriptor, these structures allow us to obtain,
traversing the tree just once, the top K nearest neighbours keypoints among
all images.

4 Probabilistic Loop Closure Detection

Given a new image, a discrete Bayes �lter is used to detect loop closure
candidates. This �lter estimates the probability that the current image closes
a loop with an already seen image, ensuring temporal coherency between
consecutive predictions. Given the current image It at time t, we denote
zt as the set of SIFT descriptors extracted from this image. These are the
observations in our �lter. We also denote Lti as the event that image It closes
a loop with image Ii, where i < t. Using these de�nitions, we want to detect
the image Ic whose index satis�es:

c = argmax
i=0,...,t−p

{P
(
Lti|z0:t

)
} , (1)

where P (Lti|z0:t) is the full posterior probability at time t given all previous
observations up to time t. As in [14], the most recent p images are not
included as hypotheses in the computation of the posterior since It is expected
to be very similar to its neighbours and then false loop closure detections will
be found. This parameter p delays the publication of hypotheses and needs
to be set according to the frame rate or the velocity of the camera.

Separating the current observation from the previous ones, the posterior
can be rewritten as:

P
(
Lti|z0:t

)
= P

(
Lti|zt, z0:t−1

)
, (2)

and then, using conditional probability properties, the next equality holds:

P
(
Lti|zt, z0:t−1

)
P (zt|z0:t−1) = P

(
zt|Lti, z0:t−1

)
P
(
Lti|z0:t−1

)
, (3)

from where we can isolate our �nal goal to obtain:

P
(
Lti|zt, z0:t−1

)
=
P (zt|Lti, z0:t−1)P (Lti|z0:t−1)

P (zt|z0:t−1)
. (4)



P (zt|z0:t−1) is independent of Lti, so it can be seen as a normalizing factor.
Under this premise and the Markov assumption, the posterior is de�ned as:

P
(
Lti|z0:t

)
= ηP

(
zt|Lti

)
P
(
Lti|z0:t−1

)
, (5)

where η represents the normalizing factor, P (zt|Lti) is the observation likeli-
hood and P (Lti|z0:t−1) is the probability distribution after a prediction step.
Decomposing the right side of (5) using the Law of Total Probability, the full
posterior can be written as:

P
(
Lti|z0:t

)
= ηP

(
zt|Lti

) t−p∑
j=0

P
(
Lti|Lt−1j

)
P
(
Lt−1j |z0:t−1

)
, (6)

where P
(
Lt−1j |z0:t−1

)
is the posterior distribution computed in the previous

time instant and P
(
Lti|Lt−1j

)
is the transition model.

Unlike [14], we do not model explicitly the probability of no loop closure
in the posterior. If the loop closure probability of It with Ic (P (Ltc|z0:t)) is
not high enough, the existence of Ltc is discarded.

4.1 Transition Model

Before updating the �lter using the current observation, the loop closure
probability at time t is predicted from P

(
Lt−1j |z0:t−1

)
according to an evolu-

tion model. The probability of loop closure with an image Ij at time t − 1
is di�used over its neighbours following a discretized Gaussian-like function
centered on j. In more detail, 90% of the total probability is distributed
among j and exactly four of its neighbours (j− 2, j− 1, j, j+1, j+2) using
coe�cients (0.1, 0.2, 0.4, 0.2, 0.1), i.e. 0.9 × (0.1, 0.2, 0.4, 0.2, 0.1). The
remaining 10% is shared uniformly across the rest of loop closure hypothe-
ses according to 0.1

max{0,t−p−5}+1
. This implies that there is always a small

probability of jumping between hypotheses far away in time, improving the
sensitivity of the �lter when the robot revisits old places.

4.2 Observation Model

Once the prediction step has been performed, the current observation needs
to be included in the Bayes �lter. We want to compute the most likely images
given the current image It and its keypoint descriptors zt, but we want to
avoid comparing It with each previous image, since this is not tractable. To
this end, the structures described in section 3 are used. Note that if the robot
has revisited the same place several times and the current image It closes this



loop again, each descriptor in zt can be close to descriptors from di�erent
previous images in the Euclidean space. This fact is taken into account in
the computation of our likelihood.

For each hypothesis i in the �lter, a score s (zt, zi) is computed. This
score represents the likelihood that the current image It closes the loop with
image Ii given their descriptors, zt and zi respectively. Initially, these scores
are set to 0 for all frames from 0 to t − p. For each descriptor in zt, the K
closest descriptors among the previous images are retrieved without taking
into account the p immediately previous frames, and each of them, denoted
by n, adds a weight wn to the score of the image where it belongs to. This
value is normalized using the total distance of the K candidates retrieved:

wn = 1− dn∑
k∈K

dk
,∀n ∈ K , (7)

where d is the Euclidean distance between the considered query descriptor
in zt and the nearest neighbour descriptor found in the tree structure. This
value is accumulated according to:

s
(
zt, zj(n)

)
= s

(
zt, zj(n)

)
+ wn ,∀n ∈ K , (8)

being j(n) the index of the image from where the candidate descriptor n was
extracted. The computation of the scores is �nished when all descriptors
in zt have been processed. Then, the likelihood function is �nally de�ned
according to the following rule [14]:

P
(
zt|Lti

)
=

{
s(zt,zi)−sσ

sµ
if s (zt, zi) ≥ sµ + sσ

1 otherwise
, (9)

being sµ and sσ respectively the mean and the standard deviation of the
set of scores. Only the most likely images given the current observation zt
increases their prior. After incorporating the observation to our �lter, the
full posterior is normalized in order to obtain a probability function.

4.3 Selection of a Loop Closure Candidate

In order to select a �nal candidate, we do not search for high peaks in the
posterior distribution, because loop closure probabilities are usually di�used
between neighbouring images. This is due to visual similarities between
consecutive frames in the sequence. Instead, for each image, we add the
probabilities in a de�ned neighbourhood. This neighbourhood is the same as
de�ned in section 4.1: frames (j − 2, j − 1, j, j + 1, j + 2) for image j.



Algorithm 1 Visual Loop Closure Detection
1: /* Variables */
2: I = {I0, . . . , IN−1}: Sequence of N input images.
3: K : Set of randomized KD-trees for feature indexing.
4: B : Discrete Bayes �lter.
5: Ft : Set of SIFT features obtained from image It.
6: c : Candidate image index for closing a loop.
7: Pc : Probability of candidate image index for closing a loop.
8: Mi : Set of matchings between image i and images between 0 and i− p.
9: nhyp : Number of hypotheses in the Bayes �lter.

10: Eij : Set of matchings surviving the epipolarity constraint-based �lter.
11: L : Output boolean variable for indicating the existence of a loop.
12: Lim : Output integer with the index of the image loop closure.
13:

14: /* Thresholds */
15: p : Number of recent images that are not included as hypothesis in the �lter.
16: Tloop : Minimum probability to consider a loop candidate.
17: Tep : Minimum number of surviving matchings after epipolar geometry validation.
18: Thyp : Minimum number of hypotheses for considering loop candidates.
19:

20: nhyp = 0
21: for t = 0 to N − 1 do /* While there are images */
22: Ft = describe(It)
23: n = t− p
24: if n > −1 then

25: updateTree(K, Fn) // Adding Fn descriptors to the tree
26: addHypotesis(B, n) // Adding a new state in the Bayes �lter
27: nhyp = nhyp + 1
28: Mi = matchTree(K, Ft)
29: predict(B) // Applying transition model to the prior distribution
30: update(B, Mi) // Incorporating the observation to the prediction
31: c, Pc = getCandidate(B) // Getting the best loop candidate
32: if Pc > Tloop and nhyp > Thyp then

33: Etc = epipolarGeometry(Ft, Fc)
34: if numberOfElements(Etc) > Tep then

35: L = True; Lim = c
36: else

37: L = False; Lim = −1
38: end if

39: else

40: L = False; Lim = −1
41: end if

42: end if

43: end for



The image Ij with the highest sum of probabilities in its neighbourhood
is selected as a loop closure candidate. If this sum is below a threshold
Tloop, loop closure hypothesis is not accepted. Otherwise, an epipolarity
analysis between It and Ij is performed in order to validate if they can come
from the same scene after a camera rotation and/or translation. Using a
RANSAC procedure, the matchings that do not ful�ll the epipolar constraint
are discarded. If the number of surviving matchings is above a threshold Tep,
the loop closure hypothesis is accepted; otherwise, it is de�nitely rejected.

Another threshold, Thyp, is de�ned to ensure a minimum number of hy-
potheses in the �lter, so that loop closure candidates are meaningful: �rst
images inserted in the �lter tend to attain a high probability of loop closure
after the normalization step, what leads to incorrect detections.

The full approach is outlined in Algorithm 1. In detail: describe extracts
and describes SIFT keypoints from an image, updateTree adds a set of SIFT
descriptors to the index and trains it, addHypothesis adds a new state to
the Bayes �lter, matchTree performs a nearest neighbour search for a set of
query SIFT descriptors, predict applies the transition function to the previ-
ous posterior, update updates the �lter using the likelihood for the current
observation, getCandidate returns the image with the maximum probability
neighbourhood and epipolarGeometry performs the epipolar geometry vali-
dation step between two images.

5 Experimental Results

Several experiments have been carried out in order to validate the suitability
of our framework for loop closure detection tasks. Datasets from indoor and
outdoor environments have been processed, providing results under di�erent
environmental conditions. Each dataset is provided with a ground truth,
which indicates, for each image in the sequence, which images can be consid-
ered as a loop closure with it. The assessment has been performed against
this ground truth counting the number of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) for each whole sequence,
where positive is meant for detection of loop closure. Then, several metrics
are computed:

• Precision: ratio between real loop closures and total amount of loop
closures detected ( TP

TP+FP
).

• Recall : ratio between real loop closures and total amount of loop clo-
sures existing in the sequence ( TP

TP+FN
).



Table 1: Confusion matrix for the lip6indoor dataset

Actual

True False

Predicted
Positive 191 0
Negative 151 31

Precision: 1, Recall: 0.86, Accuracy: 0.91

• Accuracy : Percentage of correctly classi�ed (true positive or true neg-
ative) images ( TP+TN

TP+TN+FP+FN
).

Avoiding false positives in a loop closure detection algorithm is essen-
tial, since they can introduce errors in mapping and localization tasks. The
parameters of our �lter have been con�gured under this premise. As a con-
sequence the classi�er always reaches 100% in precision for all datasets.

5.1 Lip6Indoor Dataset

This is an indoor dataset collected by Angeli et al.1 for their work in loop
closure detection. It was recorded inside the corridor of a building under
strong perceptual aliasing conditions and comprises a total of 388 images of
240 × 192 pixels. Images were acquired at 1 Hz using a single monocular
camera with a 60◦ �eld of view and automatic exposure. It performs several
loops around the corridor. The path followed can be seen in their original
paper ([14] Fig. 4). The algorithm parameters have been con�gured as
p = 15, Tloop = 0.7, Tep = 7 and Thyp = 10.

Results for this sequence can be seen in Table 1. Predicted represents the
response given by our framework (loop or not loop) for an input image, while
Actual is the value in the ground truth for this image. At 100% of precision,
our approach shows 86% of recall and 91% of accuracy. No false positives
result, as required. There are 31 false negatives, which are due to two main
reasons:

• Sensitivity of the �lter. When an old place is revisited, the likelihood
associated to that hypothesis needs to be higher than the other like-
lihood values during several consecutive images in order to increment
the posterior for this hypothesis. This introduces a delay in the loop

1http://cogrob.ensta-paristech.fr/loopclosure.html



Figure 1: Example of loop closure detection visiting several times the same
place. Image 331 (Top, Left) closes a loop with image 189 (Bottom, Left)
and image 48 (not shown). As can be seen in (Top, Right), current likeli-
hood presents two strong peaks corresponding to each candidate. After the
normalization step, the posterior (Bottom, Right), shows a single peak in the
last loop candidate.

closure detection, deriving in false negatives. This sensitivity can be
tuned by modifying the transition model of the �lter. However, more
sensitivity can introduce loop detection errors, i.e. false positives.

• Camera Rotations. When the camera is turning around a corner, it is
di�cult to �nd and match features in the image, which prevents the
hypothesis from satisfying the epipolar constraint and leads to the loop
closure hypothesis to be rejected, despite the posterior for this image
is higher than Tloop.

Fig. 1 shows the suitability of the Bayes framework in a challenging loop
closure detection situation. The camera has revisited twice the same place.
When it returns to this place again, two high peaks corresponding to the
previous visits can be seen in the likelihood, representing possible loop candi-
dates for the current image. After the prediction, update and normalization
steps, the posterior presents only one single peak at the second candidate
image, i.e. the �lter ensures temporal coherency between predictions.

Regarding the ability of the �lter to detect loops when the appearance
of the environment has changed, Fig. 2 shows an example of situation where
a loop is detected despite there is a person in the image who was not in
the previous visit. The likelihood function exhibits a clear single peak for
the expected loop candidate. After normalizing the posterior, our approach
accepts the loop closure since the epipolar constraint between the two images



Figure 2: Example of loop closure detection with changes in the environment.
Image 190 (Top, Left) closes a loop with image 47 (Bottom, Left). Likelihood
(Top, Right) presents a high peak despite there is a person in the current
image. (Bottom, Right) is the �nal posterior.

is satis�ed. Our approach is also able to detect loop closures under camera
rotations. An example can be found in Fig. 3.

Finally, this dataset has also been used to assess separately the perfor-
mance of the likelihood function. This is shown in Fig. 4, where the right
picture shows the likelihood function values for every pair of frames Ii and Ij
and the left picture is the ground truth (only the lower triangles are show).
As can be seen, our likelihood presents high values for real loop closures,
which are shown as diagonals in the images. There are more noise in the
likelihood at the beginning of the sequence because there are less images
in the trees, which implies that nearest neighbours for each descriptor are
shared between a minor number of images. This e�ect decreases along the
sequence.

5.2 Lip6Outdoor Dataset

In this second experiment we process an outdoor dataset also recorded by
Angeli et al. It performs a big loop around the city under good weather
conditions. The sequence comprises 1063 images of 240 × 192 pixels. The
path followed by the camera is shown again in their original paper ([14] Fig.
10). Only one parameter of the algorithm, p = 20, has been modi�ed with
respect to the previous experiment, since the velocity of the camera di�ers.

In general terms, this is a more complex environment than the indoor ex-
periment, since it has much more images and usually there are more changes
in appearance inside a city, due to the tra�c, for instance. Table 2 shows
the results for this sequence. Again, a high number of correct detections (TP



Figure 3: Example of loop closure detection under camera rotations. Despite
there is a camera rotation, image 216 (Top, Left) closes a loop with image
72 (Bottom, Left). The likelihood (Top, Right) presents two high peaks
since it is the third time the camera visits this place. (Bottom, Right) shows
the �nal posterior, proving that the �lter ensures the temporal coherency
between loop detections.

Figure 4: (Left) Ground truth loop closure matrix for the Lip6Indoor dataset.
(Right) Likelihood matrix computed using our approach.

Table 2: Confusion matrix for the lip6outdoor dataset

Actual

True False

Predicted
Positive 551 0
Negative 435 52

Precision: 1, Recall: 0.91, Accuracy: 0.95



Figure 5: Example of loop closure detection in the outdoor environment.
Image 621 (Top, Left) closes a loop with image 159 (Bottom, Left). (Top,
Right) Likelihood given the current image. (Bottom, Right) Full posterior
after the normalization step.

Table 3: Confusion matrix for the UIB small loop dataset

Actual

True False

Predicted
Positive 194 0
Negative 172 2

Precision: 1, Recall: 0.99, Accuracy: 0.99

and TN) are made, while no false positives arise. At 100% of precision, our
approach obtains a recall of 91% and 95% of accuracy. False negatives are
due to the same reasons outlined for the previous experiment. However, a
minor number of false negatives have resulted regarding to the length of the
sequence. This is due to the fact that the perceptual aliasing e�ect is less
present in this environment, and less images are needed to adapt the �lter
to previous hypotheses. An example of loop closure in this environment is
shown in Fig. 5. Fig 6 shows the robustness of the framework under changes
in the environment. In this case, our approach is able to �nd a loop closure
between images despite a truck has disappeared in the scene and the camera
is rotated.



Figure 6: Example of loop closure detection with apperance changes and
camera rotations. Despite the tra�c changes in the image and the camera
rotation, image 978 (Top, Left) closes a loop with image 505 (Bottom, Left).
The likelihood (Top, Right) presents two high peaks since it is the third time
the camera visits this place. (Bottom, Right) shows the �nal posterior.

5.3 UIB Small Loop Dataset

Our approach has been further validated using several sequences recorded
by ourselves. This experiment involves a loop around the Anselm Turmeda
Building of the University of Balearic Islands Campus. The sequence com-
prises 388 images of 300×240 pixels, and has been recorded using a handheld
camera at 1 Hz. In contrast to the previous experiment, it is an outdoor
dataset under bad weather conditions. The parameters used for processing
this sequence are the same as for the second dataset.

The results for this experiment are shown in Table 3. At 100% of preci-
sion, the recall is 99% and the accuracy is 99%. These values suggest that
our approach can also be used under bad weather conditions. An example
of loop closure detection for this experiment can be found in Fig 7.

The path followed by the camera is shown in Fig 8 using a representation
similar to [14]. As can be seen, during the �rst loop, no detections were
reported, meaning that any candidate had a probability above Tloop. When
the camera came back to the beginning of the sequence, the algorithm starts
detecting loop closures. Several images are needed until closing the �rst loop.
Due to the �lter inertia, these images correspond to the false negatives found.
The algorithm is then able to detect correctly the rest of the loops until the
end of the sequence.



Figure 7: Example of loop closure detection under bad weather conditions
and camera rotations for the UIB small loop dataset. Image 330 (Top, Left)
closes a loop with image 139 (Bottom, Left). (Top, Right) Likelihood given
the current image. (Bottom, Right) Full posterior after the normalization
step.

Figure 8: Path followed by the camera during the UIB small loop experiment.
The black point indicates the beginning of the sequence, the black lines show
no loop closure detections (highest posterior probability is under Tloop) and
the yellow lines represent loop closure detections (highest probability is above
Tloop and the epipolar constraint is satis�ed).



Table 4: Confusion matrix for the UIB Large Loop dataset

Actual

True False

Predicted
Positive 439 0
Negative 491 47

Precision: 1, Recall: 0.90, Accuracy: 0.95

Figure 9: Example of loop closure detection corresponding to the UIB large
loop dataset. Image 515 (Top, Left) closes a loop with image 145 (Bottom,
Left). (Top, Right) Likelihood given the current image. (Bottom, Right)
Full posterior after the normalization step.

5.4 UIB Large Loop Dataset

During this experiment, one small and one large loop were performed around
two nearby campus buildings at the University. The sequence comprises
around 16 minutes of video, resulting into 997 images of 300 × 240 pixels
grabbed at 1 Hz. There are no modi�cations in the input parameters of the
algorithm regarding previous datasets.

The trajectory followed by the camera and the response of our �lter are
roughly outlined in Fig 10. Most of the time the camera returned to previ-
ously seen places, the �lter was able to detect loop closures. Table 4 shows
again that a high number of true positives and true negatives resulted, while
no false positives arose. At 100%, the recall is 90% and the accuracy is 95%.
An example of loop closure detection for this experiment is shown in Fig 9.



Figure 10: Path followed by the camera during the UIB large loop experi-
ment. The black point indicates the beginning of the sequence, the black lines
show no loop closure detections (highest posterior probability is under Tloop),
the red lines show rejected hypoteses (no epipolar geometry is satis�ed) and
the yellow lines represent loop closure detections (highest probability is above
Tloop and the epipolar constraint is satis�ed).



Table 5: Confusion matrix for the UIB Indoor dataset

Actual

True False

Predicted
Positive 157 0
Negative 177 30

Precision: 1, Recall: 0.84, Accuracy: 0.92

5.5 UIB Indoor Dataset

This experiment involves an indoor dataset obtained inside the Anselm Tur-
meda building of the University of Balearic Islands campus. The sequence
consists of 384 images of 300× 240 pixels, and comprises a loop along di�er-
ent �oors of the building. As well as for the last experiment, the algorithm
parameters were not changed.

This sequence presents a very challenging environment, since it entails
several di�culties to be overcomed by our approach. First of all, the camera
velocity is not constant. This is due to the fact that we needed to climb and
down the stairs during the recording. This di�culty enables us to validate
the ability of the �lter to self-adapt under camera speed changes. By the
way, when the camera is at the stairs, there are several images looking at
white walls, which present very few image features and, consequently, means
an interesting challenge. Moreover, the dataset presents some parts where
illumination changes, what makes the camera adapt its operating parameters
to the environment, generating several overexposed images. Some examples
of these problems are shown in Fig. 11.

Despite the drawbacks described above, our approach is able to succeed,
as it is shown in Table 5. It obtains a recall of 84% and and accuracy of
92%. If an overexposed image or with not enough features arrives at the
�lter, the full posterior does not present high peaks and a false negative is
generated. When the image stream becomes stable, the algorithm reacts and
starts detecting loop closures again. This shows that our approach is able to
manage these challenging kinds of situations. Fig. 12 shows an example of
loop closure detection from this indoor dataset.



Figure 11: Examples of images from the indoor environment. (Top, Left)
First image in the sequence. (Top, Right) Image taken from the stairs.
(Bottom, Left) Overexposed image. (Bottom, Right) Image after camera
stabilization.

Figure 12: Example of loop closure detection from the UIB indoor dataset.
Image 260 (Top, Left) closes a loop with image 73 (Bottom, Left). (Top,
Right) Likelihood given the current image. (Bottom, Right) Full posterior
after the normalization step.



6 Conclusions and Future Work

An appearance-based loop closure detection approach using a single monoc-
ular camera and SIFT features has been presented. When a new image is
acquired, a discrete Bayes �lter is used to obtain loop closure candidates,
using a likelihood based on matching the current image descriptors with the
descriptors of the previously-seen images in an e�cient way. Then, the image
that presents the highest probability in the full posterior is selected as a loop
closure candidate. If this probability is higher than a threshold, a further
validation step based on the epipolar geometry constraint is performed to
con�rm if both images can come from the same place. Otherwise, the loop
closure hypothesis is rejected.

Despite other works make use of BoW approach for image representa-
tion, in this work raw local invariant features have been used. For managing
features, an index based on a set of randomized KD-trees is employed. Ex-
periments using datasets from di�erent environments have been reported.

Referring to future work: (a) we want to use this algorithm for visual
mapping and localization tasks for robotics; (b) matching images using other
kinds of features, such as binary descriptors, is a solution to explore, since it
can improve our approach in computational terms; (c) our Bayes �lter can
be executed in a GPU in order to speed up the loop closure detection; and
(d) we would like to investigate the use of our approach in long-term tasks,
reducing signi�catively the number of hypothesis in the �lter.
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