
Probabilistic Appearance-Based Mapping and
Localization Using Visual Features

Emilio Garcia-Fidalgo and Alberto Ortiz

Department of Mathematics and Computer Science
University of Balearic Islands, 07122 Palma de Mallorca, Spain

{emilio.garcia,alberto.ortiz}@uib.es

Abstract. An appearance-based approach for visual mapping and local-
ization is proposed in this paper. On the one hand, a new image similarity
measure between images based on number of matchings and their asso-
ciated distances is introduced. On the other hand, to optimize running
times, matchings between the current image and previous visited places
are determined using an index based on a set of randomized KD-trees.
Further, a discrete Bayes filter is used for predicting loop candidates, tak-
ing into account the previous relationships between visual locations. The
approach has been validated using image sequences from several envi-
ronments. Whereas most other approaches use omnidirectional cameras,
a single-view configuration has been selected for our experiments.

Keywords: Topological Mapping, Localization, Visual Loop-Closure

1 Introduction

A number of appearance-based localization and mapping solutions have been
proposed along the last decade. This approach represents the environment in a
topological way as a graph, where each node represents a distinctive visual lo-
cation visited by the robot and edges indicate connectivities between locations.
Using this representation, the loop closure problem can be solved comparing im-
ages directly, avoiding the estimation and maintenance of the position of feature
landmarks.

Although many works assume the availability of omnidirectional images, and
typically operate offline [1,2,3,4], many others make use of cheaper/easier to
acquire ordinary imaging configurations [5,6,7,8]. Our approach belongs to this
latter class.

Referring to the description of the relevant areas of the environment, the
Bag-of-Words (BoW) approach [9] has become quite popular relatively recently.
Cummins and Newman developed FAB-MAP [5], where a Chow-Liu tree is used
for modelling the dependencies between visual words. Angeli et al. [6,7] extended
the BoW paradigm to incremental conditions and relied on Bayesian filtering to
estimate the probability of loop closure. Despite its well-known general perfor-
mance, the BoW paradigm is affected by perceptual aliasing [10] and usually
requires an offline training stage for building the visual vocabulary.
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Other approaches use global descriptors, such as e.g. Gist [11]. Singh and
Kosecka [12] computed Gist descriptors in omnidirectional images of urban en-
vironments for detecting loop closures. Bayes filtering is not considered in this
work. Liu and Zhang [13] applied Principal Component Analysis (PCA) to Gist
descriptors previously to computing the observation likelihood in a particle filter.

Rather than BoW or global descriptors, some authors have used local invari-
ant features directly [8,10,14,15]. Zhang [10] presented a method for selecting a
subset of visual features extracted from an image. A location is represented by a
set of features that can be matched consecutively in several images. The problem
of this approach is that the number of features to manage increases while new
images are added, and a linear search for matching becomes intractable. This
drawback is overcome in [8] by indexing features through a KD-tree structure.
The approach we follow in this paper complies with these guidelines. However,
we perform mapping and localization, while they focus their work exclusively on
localization.

More specifically, we present an appearance-based framework for visual map-
ping and localization using local invariant features directly. Given a new image,
we assess how different from the current location is using a similarity function,
which is based on the number of matchings and their correspondent distances.
These matchings can be obtained efficiently building a set of randomized KD-
trees [8]. If the image is not similar enough, the probability of loop closure is
computed through a Bayesian framework before considering the expansion of
the map with a new node. A further condition derived from epipolar geometry
is checked next to validate if the image closes a loop or is a new location in
the map. A single monocular camera is employed in all our experiments. The
rest of the paper is organized as follows: Section 2 explains the basics of our
algorithm, Section 3 shows experimental results obtained from different datasets
and Section 4 concludes the paper.

2 Algorithm Overview

Storing and handling all the images perceived by a robot during a visual local-
ization and mapping task is typically intractable for real scenarios. To reduce the
number of images to consider, a number of them, called keyframes, are carefully
selected online. These keyframes represent visually distinct locations of the envi-
ronment. In our map, each node corresponds to a keyframe, and each keyframe
is described by its SURF [16] features.

Our approach considers that the robot is located in the last keyframe ac-
quired while the environment appearance does not change. Given a new image,
SURF features are extracted and then a similarity function is evaluated for the
image and the current keyframe. If they are similar enough, the robot keeps at
the current location. Otherwise, the image needs to be processed in order to
determine if a loop has been closed, what requires updating the current location
to a previously visited place, or else a new location (keyframe) is defined.
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Algorithm 1 Appearance-Based Mapping and Localization
1: /* Variables */
2: I = {I0, . . . , IN−1} : Sequence of N input images.
3: G : Graph representing the environment topology.
4: T : KD-tree for feature indexing.
5: Sij : Similarity between images i and j.
6: k : Current keyframe index.
7: Ft : Set of SURF features obtained from image It.
8: c : Candidate keyframe index for closing a loop.
9: Mi

j : Set of matchings between images i and j.
10: Mi : Set of matchings between image i and all keyframes in the graph.
11: Eij : Set of matchings surviving the epipolarity constraint-based filter.
12:

13: k = 0
14: F0 = describe(I0)
15: addNode(G, 0)
16: updateTree(T, F0)
17: for t = 1 to N − 1 do /* While there are images */
18: Ft = describe(It)
19: Mt = match(Ft, T )

20: Skt = similarity(Mk
t )

21: if Skt < MIN SIM then /* Current view differs from current keyframe */
22: c, Ect = detectLoopClosure(G,Mt, Ft)
23: if numberOfElements(Ect ) > MIN MATCHES then /* Loop Closure Detected */
24: addLink(G, k, c)
25: k = c
26: else /* New node (keyframe) is added to the map */
27: addNode(G, t)
28: addLink(G, k, t)
29: updateTree(T, Ft)
30: k = t
31: end if
32: end if
33: end for

An offline version of the approach is outlined as Algorithm 1. In detail,
describe extracts and describes SURF keypoints from an image, addNode up-
dates the topology of the environment adding a new location, addLink creates a
bidirectional connection between two locations in the map, updateTree adds a
set of SURF descriptors to the index and trains it and match performs a nearest
neighbour search for a set of query SURF descriptors and filters the resulting
matches using the distance ratio test [17]. MIN SIM is a threshold that indicates
the minimum similarity required to keep at the same location and MIN MATCHES

is another threshold that represents the minimum number of matchings required
to state that the epipolarity condition holds between the current image and a
candidate to loop closure. The functions similarity and detectLoopClosure

are key parts of our approach. The following subsections explain each of them
in detail.

2.1 Image Similarity

Given two images Ii and Ij and the set of matchings between them, M i
j , we

define a first similarity value between them Sd (Ii, Ij) as:

Sd (Ii, Ij) = 1−

∑
m∈Mi

j
dist (m)

#M i
j ×Dmax

, (1)
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where Dmax is the maximum distance between two SURF descriptors1, #M i
j is

the cardinal of set M i
j and dist is the distance between two matched features.

Notice that Sd always takes values between 0 and 1.
An additional similarity function based on the number of matchings Sm (Ii, Ij)

is defined as follows:

Sm (Ii, Ij) =
#M i

j

min(Ni, Nj)
, (2)

where Ni and Nj are the number of keypoints of respectively Ii and Ij , and
min is the minimum operator. We combine (1) and (2) in order to obtain a final
similarity value as:

S (Ii, Ij) = αSd (Ii, Ij) + (1− α)Sm (Ii, Ij) , (3)

where α is a weighting factor. We have set this value experimentally to 0.65,
giving more importance to the term accounting for the matching distances. The
closer S is to 1, the more similar these images are. Notice that actually S is
independent of the image descriptor: (1) can be particularized for any descriptor
recalculating Dmax.

2.2 Loop Closure Detection

The loop closure condition is assessed whenever the image captured by the robot
is not similar enough to the current keyframe; otherwise the map is extended with
a new location. A discrete Bayes filter is used to detect loop closure candidates,
exploiting the known neighbourhood relationships of the environment. We want
to estimate the most likely locations given the current image It and the current
location.

In our model, the states represent topological locations in the map, while the
transition function determines the probability of going from one state to another.
Given an image It at time t, we denote zt as the set of SURF descriptors extracted
from It. These are the observations in our filter. For each state, the probability
of being at this location at time t given all previous observations up to time t is:

P
(
Lt
i|z0:t

)
= η P

(
zt|Lt

i

)
P
(
Lt
i|z0:t−1

)
, (4)

where η is a normalizing factor, P (zt|Lt
i) is the observation likelihood and

P (Lt
i|z0:t−1) is the probability distribution after a prediction step. The term

P (zt|Lt
i) models the probability of acquiring certain observation zt at location

Li at time t. In our model, this probability is directly related to the matchings
between the current image and the keyframe at location Li:

P
(
zt|Lt

i

)
= η

#M i
t

Nt
, (5)

where η is again a normalizing factor, M i
t represents the matchings between the

current image and the keyframe of location Li and Nt is the number of features

1 Using a 128-element SURF descriptor, this value has been set to 2
√

128.
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found in It. These matchings can be efficiently obtained using the KD-tree-based
index.

The second term in Equation 4 can be written as:

P
(
Lt
i|z0:t−1

)
=
∑
j∈L

P
(
Lt
i|Lt−1

j

)
P
(
Lt−1
j |z0:t−1

)
, (6)

being L the set of locations. In this equation, P
(
Lt
i|L

t−1
j

)
models the probability

of transition from a location Lj to another Li between two consecutive instants.
We want to represent the fact that the closer two locations are in the graph, the
higher is the probability of transition. Then, this term is modelled as:

P
(
Lt
i|Lt−1

j

)
= η e

−dist(Li,Lj)
σ2 , (7)

where dist (Li, Lj) is the shortest path in number of steps required to go from Li
to Lj and σ2 is the variance of distances for location Li. The shortest path in the
graph is computed using the Dijktra’s algorithm. Each time a new location is
added to the graph, the state vector of the filter is augmented and the transition
matrix P

(
Lt
i|L

t−1
j

)
is recomputed.

Once the full posterior distribution has been calculated, best w candidate
locations are selected. This set is denoted as C = {c1, . . . , cw}. For each cx, an
epipolarity constraint between image Icx and current image It is assessed in or-
der to validate if they can come from the same view after a camera rotation or
translation. Using a RANSAC procedure, matchings not fulfilling the constraint
are discarded. We denote the remaining ones as Ecx

t . For selecting a final can-
didate c, a function that involves the probability of being at a certain location
and the number of matchings surviving the epipolarity constraint is evaluated:

c = arg max
ci∈C

{#Eci
t × P

(
Lt
ci |z0:t

)
} . (8)

The final decision about wheter It closes a loop with keyframe c or is a new
location is taken in accordance to a comparison between Ec

t and a threshold.

3 Experimental Validation

Several experiments have been carried out in order to validate the suitability
of our framework for visual localization and mapping tasks. Two datasets from
indoor and outdoor environments have been used, in order to verify our method
under different environmental conditions. Each dataset contains odometry infor-
mation, which has been only used for visualization purposes, since our method
is purely based on appearance.

3.1 Indoor Environment

The first dataset is publicly available for download2. This sequence was recorded
at the Computing Science Centre of the University of Alberta. It comprises a

2 http://radish.sourceforge.net
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total of 512 images of 640 × 480 pixels, and completes a loop around the third
floor. Images were captured with a Dragonfly IEEE1394 digital camera from
Point Grey Research mounted in an iRobot Magellan Pro robot. An image was
taken after an approximate 15 cm translation or 5 degree rotation, whichever
came first.

For the experiment, this sequence was concatenated three times, the first two
in forward direction and the last one in reverse direction. The goal was to verify
that the map was created during the first loop and remained unaltered during
the remaining 1024 frames. That is to say, the idea was that the next loops only
assigned images to previously seen places (loop closures) and no new keyframes
were added to the map, even in the reverse direction.

Fig. 1. Results for the indoor dataset. (Top, Left) Final environment topology. Red
points indicate selected keyframes in the image sequence and blue lines show links
between these keyframes. (Top, Right) Relation between query images (horizontal axis)
and its correspondent matched keyframes (vertical axis). Loop closure detected by our
framework: image 506 in the sequence (Bottom, Left) closes the loop with image 0
(Bottom, Right).

Results can be seen in Fig. 1. A total of 26 keyframes were selected from the
input image sequence. As expected, all keyframes were added during the first
loop. Next loops only assigned their images to the previous locations. This can
be seen in the upright image. The first loop was closed at image 506 and the
second one at frame 1017. The small gap that can be observed in the plot is due
to the fact that the sequence does not begin and end exactly at the same place.
Images closing the first loop in the sequence are shown in Fig. 1(bottom).

3.2 Outdoor Environment

An outdoor public dataset has also been processed3. This dataset is a high-
quality stereo sequence with a resolution of 674 × 187 pixels, captured by a

3 http://www.cvlibs.net/datasets/karlsruhe sequences.html
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Pointgrey Flea2 firewire camera and recorded from a moving vehicle around the
city of Karlsruhe. Only the left images of the sequence were taken into account.
The sequence includes a single loop in an outdoor environment, which we want
to detect with our approach.

Fig. 2. Results for the outdoor dataset. (Left) Final environment topology. Red points
indicate selected keyframes in the image sequence and blue lines show links between
these keyframes. (Right) Relation between query images (horizontal axis) and its
matched keyframes (vertical axis).

Results are shown in Fig. 2. A total of 70 keyframes were selected from the
input sequence. This number usually depends on the frame rate of the input
images and the speed of the vehicle. In this case, the velocity is not constant
due to traffic issues in the city. This fact makes more difficult finding similar
images in consecutive frames, and explains the dispersion of the keyframes in
some places. As can be seen in the plot of Fig. 2, a loop closure is detected
between image 588 and 62.

3.3 Combining environments

An experiment was performed concatenating the previous sequences. Using the
indoor sequence, an environment map is generated. The images in the outdoor
sequence were used as query images. As expected, no loop closures were detected.
Instead, the outdoor map was generated starting from the last keyframe detected
in the indoor sequence. This experiment shows the behaviour of our framework
under the presence of unexplored areas, adding new keyframes to the final graph
when the current image is not similar enough to the known visual locations.

3.4 Map Representativeness

One last experiment was performed to assess the quality of the generated maps.
The idea was to verify how representative of the environment the maps were
independently of the frame rate or the speed of the robot. For each sequence,
two loops were concatenated. As well as for the previous experiments, the first
loop was used to build the map. Nevertheless, 1 out of N frames were removed
from the image sequence to assess the sensitivity of the method with regard to
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Table 1. Results for the last experiment. The Total Keyframes column represent the
number of locations created during the first loop and the Added column indicates the
number of keyframes added during the second loop. See text for further details.

Indoor Dataset Outdoor Dataset

Discarded Total Keyframess Added Total Keyframes Added

None (0%) 26 0 70 0

1 out 5 (20%) 26 0 69 0

1 out 4 (25%) 26 0 66 0

1 out 3 (33%) 25 0 66 0

1 out 2 (50%) 25 0 65 0

the input stream. The images of the second loop were then used to localize the
robot in the map. We wanted to prove that no new keyframes were added to the
map during the second loop, which means that images had been associated to
previous locations irrespective of the frames used to build the map. Results for
this experiment are shown in Table 1 for N from 2 to 5. As expected, different
numbers of keyframes are found for each N , which modifies the final topology,
but does not affect the localization process, since it does not add new locations
to the final map in any case.

4 Conclusions and Future Work

In this work, an appearance-based mapping and localization approach using a
single monocular camera and SURF features has been presented. A similarity
function based on matchings and their distances is used to compare two images.
When the current image acquired by the robot changes, a discrete Bayes filter
is used to obtain loop closure candidates. The election of a final candidate is
directly related with the probability to be at each candidate location and the
number of matchings complying with the epipolar constraints. These matchings
are used for deciding if this image closes a loop or otherwise it represents a new
keyframe. For managing features, an index based on a set of randomized KD-
trees is used. Experiments using datasets from different environments have been
reported.

Referring to future work: (a) the reactiveness of the system can be improved
if several images in an sliding window are processed when deciding if an image
closes a loop, avoiding jumps in localization when similar visual locations are
very close; (b) matching images using binary descriptors is a solution to explore,
since it can improve our approach in computational terms; and (c) the similarity
function can be embedded in the Bayes filter in order to obtain loop candidates
previously.
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