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Abstract—Recognizing whether the current place has been
visited before or not is an important task in robotic navigation,
since it helps to reduce the inconsistencies produced by the
inherent noise of navigation sensors. When a camera is used
as input for navigation, this process is known as visual loop
closure detection. Under this context, in this work we propose
a loop closure detection method based on superpixels and a
Bag of Words scheme. A novel image description method for
superpixels is proposed. Our approach also makes use of the
concept of dynamic islands, which allows us to group images
close in time and to avoid images taken from the same place to
compete among them as loop closure candidates. The proposed
method is validated using several outdoor public image sequences
and compared to other state-of-the-art solutions.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) tech-
niques have become an important task for autonomous robots.
Normally, these approaches rely on loop Closure Detection
(LCD) methods, which detect whether the robot is in a
previously visited place. This information is crucial for SLAM,
since it can be used to reduce the inaccuracies produced by
using raw sensor data, generating more accurate maps. In the
last decades, a high number of vision-based solutions have
emerged, motivated by the low cost of cameras and the rich
source of information that images provide. These solutions
are usually known as appearance-based loop closure detection
methods [1].

The Bag of Words (BoW) model, used in combination with
an inverted file, has been shown as an effective method for
indexing previously seen images. Due to this reason, it has
been extensively used for visual loop closure detection [2]–
[5]. Depending on when the dictionary is built, BoW-based
methods can be mainly classified into offline and online
solutions. Regarding offline solutions, where the dictionary
is built during a training stage, one of the key works in
this field is FAB-MAP [2], where the authors introduced
a probabilistic framework using a visual vocabulary trained
on SURF descriptors together with an inverted file to detect
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visited places. A binary vocabulary using BRIEF descriptors is
trained in [3]. To detect loop closures, the authors introduced
the concept of fixed size islands to group images close in
time and thus a query image is matched to the island with
the highest score. More recently, Bampis et al. [6] proposed
a method for detecting loop closures by matching sequences
of images instead of single frames. The main difference
between their work and seqSLAM [7], which is also based on
sequence matching, is in describing the sequence of images
by combining the visual words found in the images into a
single vector. In seqSLAM, sequence matching is based on
accumulating matching scores between visual words vectors.
Conversely, online solutions build the dictionary as the vehicle
navigates, avoiding the training stage. In this regard, Angeli et
al. [5] proposed an incremental BoW using SIFT descriptors
to detect loop closures within a Bayesian filtering scheme.
In [8], the authors introduced an Online Visual Vocabulary
(OVV), where an incremental vocabulary is built using SURF
features and an agglomerative clustering approach. Recently,
IBoW-LCD [4] built the visual vocabulary online using ORB
descriptors. The search for similar images is performed using
an inverted file and then using the concept of dynamic islands
to group images close in time. In this work, we make use of
the concept of dynamic islands, but in combination with an
offline BoW approach.

Methods described so far are mainly based on local feature
descriptors. In this case, a high number of keypoints are
typically used per image to describe it accurately. As an
alternative, other authors have made use of global descriptors
[7], [9], where the whole image is represented by just a single
vector. Despite the fact that all these solutions have demon-
strated good performance for LCD, one can still consider
a third kind of description approach based on superpixels
as an intermediate representation and a good compromise
between local and global descriptors. A superpixel, which is
a group of pixels of an image with similar properties, carry
more information than single pixels and line up better with
object boundaries than image patches. Some frameworks have
already used superpixels for Visual Place Recognition (VPR),
which can be seen as a very related field, more focused on
severe appearance changes. In [10], an image is segmented into



superpixels using SLIC and Convolutional Neural Networks
(CNNs) are next used to extract features. In [11], authors
tried to predict the image changes for different seasons. They
describe superpixels using color histograms combined with
SURF descriptors. Later, a vocabulary is built for each scene
condition and, then, an additional dictionary that translates
between both vocabularies is trained and used for recognizing
places.

Given the benefits that superpixels present, in this work
we introduce a novel method for LCD based on superpixels
instead of keypoints or global descriptors. A key difference of
our work and [10], [11] is that the latter use superpixels for
VPR in changing environements. Instead we use superpixels to
detect visited places. To describe the image, we also introduce
a method for describing superpixels that make use of different
global description strategies. To retrieve similar images, an
offline BoW model is used together with an inverted file, and,
additionally, we use the concept of dynamic islands [4] in
order to avoid images taken from the same place to compete
among them as loop closure candidates. Our solution is
validated against several public datasets and compared against
several state-of-the-art solutions.

II. IMAGE DESCRIPTION

A. Superpixel Segmentation

To describe an image, our approach begins by performing
a superpixel segmentation of the corresponding frame. As
mentioned before, a superpixel is a group of neighbouring
pixels with similar color or texture properties. Superpixels
usually represent small regions of the image and/or objects.
A high number of superpixel algorithms can be found in the
literature [12]. In this work, we consider two of them: a graph-
based image segmentation method [13] and the Simple Linear
Iterative Clustering (SLIC) method [14]. We have empirically
found that the zero parameter version of SLIC (SLICO)
results into more compact and regular-shaped superpixels.
SLIC clusters pixels in the combined five-dimensional color
(LAB) and image plane (x, y) space to efficiently generate
compact, nearly uniform superpixels, in an efficient and fast
way. This algorithm shows good boundary adherence and
relatively stable superpixels in several of the datasets used
in this work, which is of high importance for loop closure
detection. Due to these advantages and its simplicity, we chose
SLIC as a superpixel segmentation method.

B. Describing Superpixels

After the segmentation step, we describe each of the re-
sulting superpixels. For this purpose, we consider three main
visual properties of the superpixel: colour, texture and struc-
ture. Several feature vectors are computed for each of these
properties and, finally, combined to create the final descriptor
of the superpixel.

As a colour descriptor, we extract RGB histograms to
represent the distribution of pixel colours in every superpixel
of the image. Each color channel (red, green, blue) is used
to create a histogram of 32 bins from pixels corresponding

to superpixel k. Therefore, we compute three feature vectors
V R
Hist, V

G
Hist, V

B
Hist, one for each channel.

To represent texture, we use Uniform Local Binary Patterns
(ULBP) histograms [15]. We convert the colour image to gray
scale and then each pixel is compared in intensity with its
circularly symmetric neighbourhood of p pixels. In this work,
we use p = 8 surrounding pixels and a radius r = 1. If the
intensity of the center pixel is higher than its neighbour’s, the
corresponding bit of the binary pattern is set to 0. Otherwise
it is set to 1. Therefore, the LBP value for pixel c is calculated
as:

LBPp,r(c) =

p−1∑
j=0

S(Ij − Ic)× 2j , (1)

where Ij and Ic are respectively the intensity values of the
neighbour and central pixels and S(x) is defined as:

S(x) =

{
1 ifx ≥ 0
0 otherwise (2)

Next, a histogram of the LBP values VLBP is computed for
superpixel k. We consider the uniform patterns, which contain
at most 2 transitions between 0 and 1, e.g. (10001111)2,
because they convey important texture properties. This results
into a histogram of 10 dimensions, although we discard the
last bin, since it accounts for the non-uniform patterns.

The Histogram of Oriented Gradients (HoG) [16] is em-
ployed as a structure descriptor for the superpixel. We denote
this feature vector as VHOG. Unlike the original work, where a
high-dimensional descriptor is computed for recognition tasks,
in our solution we extract a 16-bin histogram of gradient
orientations for each superpixel.

Finally, each individual feature vector is normalized sepa-
rately, and, then combined to create the final descriptor for the
superpixel k:

V (k) = [V
R

Hist, V
G

Hist, V
B

Hist, V LBP , V HOG]. (3)

Given the sizes of the individual feature vectors, the length of
the final descriptor is 32 + 32 + 32 + 9 + 16 = 121. In this
work, we calculate the dissimilarity between descriptors using
the Euclidean distance.

III. IMAGE DATABASE

A. Training the Visual Vocabulary

In order to retrieve previous images, we use an offline BoW
model in combination with an inverted index similarly to [3],
although our method is based on superpixel descriptors. In an
offline BoW scheme, the visual dictionary is created during
a training stage. A set of training images is segmented into
superpixels, and, next, a descriptor is computed for each one,
as explained in section II-B. The set of superpixel descriptors
is clustered through the k-means algorithm. Resulting repre-
sentative cluster centers are selected as the visual words for the
vocabulary. During this training stage, a weight is assigned to
each visual word by means of the inverse document frequency
(idf ) term, which determines the importance of the word in
the set of training images. Thus we scale up the weight of



the rare visual words and give lower weight to the frequent
visual words because they are not discriminative. The idf is
calculated by (4):

idf = log

(
N

Nw

)
, (4)

where N is the total number of images and Nw is the number
of images where the visual word w appears [17].

B. Retrieving Similar Images

Given a query frame Iq , we calculate first the superpixel
descriptors. Next, similarity score s(Iq, It) is initialized to
0 for all possible t previously seen frames. Subsequently,
each superpixel descriptor in the query image is efficiently
associated to its closest visual word in the vocabulary by
means of a set of randomized kd-trees. Next, the inverted file
allows us to retrieve a list of similar images where each visual
word appears. For each visual word in Iq , we compute the term
frequency (tf ) weight that represents the frequency of a word
in the image and we update the score s of the train images
that share common words with the query frame as follows:

s(Iq, It) = s(Iq, It) + tf × idf (5)

After getting the list of similar images with their corresponding
scores, we store the query image Iq in the inverted file.

IV. LOOP CLOSURE DETECTION

The method we use to detect loop closures is based on
[4]. Given a query image at time t, we start searching similar
images using the inverted file explained in the previous section.
In order to avoid matching the query image with the immediate
previous frames, we delay the storage of the most recent N
frames into the inverted file. After getting a list of similar
images with their corresponding scores we normalize the
scores using min-max [4]: For a query image It at time stamp
t having j similar images Ct = {Is1 , . . . , Isj}, ordered by
their corresponding scores s(It, Ik), the normalized score is
defined by eq.(6):

s̃(It, Ik) =
s(It, Ik)− s(It, Is1)

s(It, Isj )− s(It, Is1)
, (6)

where s(It, Is1) and s(It, Isj ) are, respectively, the minimum
and maximum scores. Then we filter the list of normalized
scores according to a threshold and get the final list of image
matches C̃t ⊆ Ct.

We next use the concept of the dynamic islands to group
together images in C̃t close in time. Each island is represented
by the image with highest score. To find the loop closure
candidate, we start by searching for the closest island Xm

n .
If the time-stamp of It belongs to the time interval of the
island, then the image is part of this island Xm

n and the time
interval of Xm

n is updated to includeIt. In case no close island
is found, a new island is created. Next, we compute a score
for every island which is the sum of scores of the images that

belong to the island. We normalize the islands scores G by
dividing them by the size of the island:

G(Xm
n ) =

n∑
i=m

s̃(It, Ii)

m− n+ 1
, (7)

and finally get a list of sorted island scores L. To select the final
loop closure candidate, we search for priority islands, which
are the islands found at time t that overlap with the best island
selected at time t-1. If we find priority islands we consider the
one with the highest score and select its representative image
as loop closure candidate. If no priority islands are found, we
choose the island with the highest score in L.

The last step comprises an epipolarity geometry check.
Similarly to [4], we compute feature matchings between the
query image and the final candidate, then we filter these
matches using the ratio test and also by means of RANSAC
using the epipolarity constraint as the model to fit.

V. EXPERIMENTAL RESULTS

In this section we evaluate the proposed system using
public datasets. We use the sequences 01, 02, 03, 04 and
07 of the KITTI dataset for the training process to build
two vocabularies of 800000 and 100000 visual words using
5 million descriptors from 7930 images. Next, we use the
sequences 00, 05 and 06 of the KITTI for testing.

We use N = 100 to avoid the previous N frames as loop
closure candidates (see section IV). For the epipolarity check,
900 FAST keypoints are detected and described using BRISK
descriptors.

For the evaluation, we utilize the available ground truth
and use the precision-recall metrics. Precision is defined as
the number of correct loop closure detections (true positives)
divided by those correct matches plus the incorrect detects
(false positives). Recall is defined as the ratio of the correct
loop closure detections over the correct detections plus the
detect discarded erroneously by the system (false negatives).
The goal of our system is to achieve a high recall value at
100 % of precision. The precision-recall curves can be found
in Fig. 1 and in Fig. 2 for both vocabularies.
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Fig. 1. Precision-recall (P-R) curves for the 100k visual words vocabulary.
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Fig. 2. Precision-recall (P-R) curves for the 800k visual words vocabulary.

We can see that the proposed method achieves high recall
rates especially for the KITTI00 sequence for which the recall
is above 90(%) at 100(%) of precision using the larger vocabu-
lary. We show the precision-recall values for both vocabularies
in table I. We can see that the size of the vocabulary does not
have a big impact on the recall values, since we can still detect
a large amount of loop closures with the smaller dictionary and
requiring less computational time.

TABLE I
COMPARISON OF MAXIMUM RECALL AT 100% PRECISION.

800K visual words 100K visual words
R (%) R (%)

K00 91.38 81.62
K05 61.33 61.50
K06 67.65 68.77

Next in table II we compare our method using the 100K
visual vocabulary with previous techniques available in the
literature. The results [2] and [7] are taken from [4]. The term
n.a. means that the corresponding metric value is not available.
In the case of the sequence 00, our method attains higher recall
compared to the other methods, achieving 81.62(%) recall at
100(%) precision. For the sequences K05 and K06, we can
see that the incremental approaches [4] and [6] outperform
our method, although ours is the second best. Summing
up, we observe that by using superpixels we obtain similar
performance than keypoints for fewer computational resources.

TABLE II
COMPARISON OF MAXIMUM RECALL AT 100% PRECISION.

K00 K05 K06
Cummins [2] 49.21 32.15 55.34
Milford [7] 67.04 41.37 64.68
Bampis [6] 81.54 84.80 n.a.

Garcia-Fidalgo [4] 76.50 n.a. 95.53
Proposed 81.62 61.50 68.77

VI. CONCLUSION AND FUTURE WORK

In this work, we propose the use of superpixels for
appearance-based loop closure detection. We make use of a

descriptor combining color, structure and texture to describe
the superpixels. To detect revisited places we rely on an offline
Bag of Words model and an inverted file to retrieve similar
images. This framework also uses the concept of islands to
group similar images according to their time interval. To
validate our approach we used a public dataset, the KITTI
dataset, and compared our results with other state-of-the-art
solutions.

Using a trained vocabulary takes a long time and limits
the visual words to a certain environment. To overcome this
limitation, our future work will focus on using an incremen-
tal solution. We also plan to consider Convolutional Neural
Networks (CNN’s) for describing superpixels.
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