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MSC-VO: Exploiting Manhattan and Structural
Constraints for Visual Odometry

Joan P. Company-Corcoles

Abstract—Visual odometry algorithms tend to degrade when fac-
ing low-textured scenes —from e.g. human-made environments—,
where it is often difficult to find a sufficient number of point
features. Alternative geometrical visual cues, such as lines, which
can often be found within these scenarios, can become particu-
larly useful. Moreover, these scenarios typically present structural
regularities, such as parallelism or orthogonality, and hold the
Manhattan World assumption. Under these premises, in this work,
we introduce MSC-VO, an RGB-D -based visual odometry ap-
proach that combines both point and line features and leverages,
if exist, those structural regularities and the Manhattan axes of
the scene. Within our approach, these structural constraints are
initially used to estimate accurately the 3D position of the extracted
lines. These constraints are also combined next with the estimated
Manhattan axes and the reprojection errors of points and lines
to refine the camera pose by means of local map optimization.
Such a combination enables our approach to operate even in the
absence of the aforementioned constraints, allowing the method to
work for a wider variety of scenarios. Furthermore, we propose a
novel multi-view Manhattan axes estimation procedure that mainly
relies on line features. MSC-VO is assessed using several public
datasets, outperforming other state-of-the-art solutions, and com-
paring favourably even with some SLAM methods.

Index Terms—Localization, mapping, SLAM.

1. INTRODUCTION

ISUAL Odometry (VO) is the process of estimating the
V trajectory of a camera within an environment by analysing
the sequence of images captured. VO is a key part of a more
sophisticated family of methods known as Visual Simultaneous
Localization and Mapping (V-SLAM), which typically combine
VO with a loop closure detection approach to perform both tasks
at the same time. When a previously seen place is revisited,
the accumulated drift produced by VO can be alleviated incor-
porating new constraints into the optimization stage. However,
this strategy does not completely remove the camera pose error,
so that the overall performance of any SLAM system gets
determined by the VO accuracy [1].
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Many VO and SLAM systems rely on point features because
of their wider applicability in general terms [2]. However, in
low-textured scenarios, their performance decrease due to the
low number of points detected [3]. In this regard, the combina-
tion of point and line features has been demonstrated to reduce
the number of tracking failures in these environments [3]-[5].
A complementary technique is to take profit of the structural
constraints typically present in these scenarios, such as paral-
lelism and/or orthogonality, through a pose-graph optimization
strategy [6]. Another well-known strategy, which can be used
to reduce the rotation drift in human-made environments, is to
adopt the Manhattan World (MW) assumption [7]. This hypoth-
esis assumes a Cartesian coordinate system for the environment
and that most part of the geometrical entities present in the
scene align to one of its axes, named as Manhattan Axes (MA).
This assumption is fundamentally used during the tracking
stage [8]-[12]. Nonetheless, these methods do not usually take
into account that some indoor environments are not strictly
adhering to this assumption, leading to degradation in accuracy
or even to tracking failures [13].

Based on the above, this work exploits the benefits of point and
line features used in combination with structural constraints and
MA alignment to propose a new RGB-D VO framework named
as MSC-VO from Manhattan and Structural Constraints - Visual
Odometry. As already said, the proposed method relies on point
and line features, mostly because of their low detection times.
Additionally, to address the inaccuracies in depth estimation
which result from occlusions, depth discontinuities and RGB-D
noise, which is even more notorious for lines than for points,
we propose a two-step procedure that can be briefly stated as
(1) for each line detected in the image plane, we estimate its
3D line endpoints using a robust fitting procedure, and (2) we
next refine the estimated endpoints using the scene structural
regularities. Moreover, our approach proposes a novel local map
optimization stage which combines point and line reprojection
errors along with structural regularities and MA alignment,
resulting into more precise local trajectory estimations. Unlike
other approaches, where the MW constraints are used during the
tracking stage, our solution incorporates the MW assumption
during local map optimization, which allows us not to slow
down the tracking, which typically requires real-time operation
to perform properly. Finally, we propose a novel multi-view MA
initialization procedure. A first illustration of the performance
of MSC-VO can be found in Fig. 1.

In brief, the most important contributions of this work are:

1) A robust RGB-D VO framework for low-textured envi-

ronments, which can improve the pose accuracy when
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Fig. 1. Example of local map generated by MSC-VO. For a better under-
standing, only line features are shown. The map corresponds to a human-made
environment, which, as expected, is rich in line features. Furthermore, parallel
and orthogonal relations between lines are highly present due to the design of
these environments. The Manhattan axis line associations are shown using red,
green and blue colours, while non-associated lines are labelled in purple- Those
lines not included in the covisibility graph are shown in black.

structural regularities and MA alignment are present in the
scene. Otherwise, our solution remains operational, as will
be shown in the experimental results section.

2) A 3D line endpoint computation method based on the
structural information present in the scene.

3) An accurate and efficient 3D local map optimization strat-
egy, which combines reprojection errors with structural
constraints and MA alignment.

4) A novel MA initialization procedure that refines the esti-
mation of the traditionally employed Mean Shift algorithm
by using multiple frame observations in a multi-graph
non-linear least squares formulation.

5) An extensive evaluation of the proposed approach on sev-
eral public datasets and a comparison with other VO and
SLAM state-of-the-art methods.

6) As an additional contribution, the source code MSC-VO is
available online for the community.'

The rest of the paper is organized as follows: Section II
overviews most relevant related works in the field; the proposed
framework is introduced in Section III; Section IV reports on
the results obtained; and, finally, Section V concludes the paper
and suggests some future research lines.

II. RELATED WORK

VO and Visual SLAM algorithms can be roughly classi-
fied into two main categories: feature-based and direct meth-
ods [1]. Among them, feature-based approaches are typically
more robust to illumination changes than direct methods. De-
spite their impressive results on well-textured scenarios [2],
their performance decreases when dealing with low-textured
environments [4]. Due to this reason, some authors have opted
for the combination of points with other geometric entities, e.g.
lines [3]-[5], planes [6], or both [13].

Assuming a MW in human-made environments has demon-
strated to be very effective to reduce the rotational drift [8]-[12].
Generally, this premise is taken into account during the tracking
stage, being usually decoupled the rotation and the translation
parts. Different strategies have been proposed to estimate and
track the MA. For example, Zhou et al. [8] propose a single Mean
Shift iteration that tracks the dominant MA for each frame by
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using a set of normal vectors. The translational part is computed
through three simple 1D density alignments. In [9], the trans-
lation estimation is improved through a Kanade-Lucas-Tomasi
(KLT) feature tracker. However, these two approaches require
the existence of multiple orthogonal planes per frame. To solve
this issue, Kim et al. [10] combine line and plane features within
aMean Shift-based approach. In addition, they propose to use the
reprojection error from the tracked points in the estimation of the
translation. In a more recent work, they add an orthogonal plane
detection and tracking method [11]. Another solution to improve
the tracking accuracy is presented in [12], where the authors
introduce the concept of plane orientation relevance to track the
MA. More recently, other features are employed in [14], which
combines vanishing directions of 3D lines and plane normal
vectors to track the MA. In this regard, [13], [14] report that the
use of planar features increases the accuracy of the tracking, and,
additionally, contributes positively to the estimation of the MA.
However, plane detection usually relies on depth estimation,
which can fail in some scenarios due to the range limitations and
noise of RGB-D cameras [13]; contrarily, line features can be
detected directly from the available images. Besides, planes and
lines detection require similar computational times if the number
of planes is not high; otherwise, the complexity of the underlying
processes leads to larger running times for planes. Additionally,
to detect and track the MA robustly, these methods typically
combine planes with other features, such as lines. Consequently
with the aforementioned, our pipeline combines points and lines.

Moreover, the accuracy of the estimated MA determines the
correctness of the system during its operation. To reduce these
inaccuracies, Li et al. [15] describe a method that refines the
reference MA by tracking it on each frame, and, thus, obtains
multiple reference MA, which are later fused by Kalman Filter-
ing. Following this idea, we propose to refine the position of 3D
lines during MA estimation by using a graph-based non-linear
error function that includes multiple views of the lines. However,
unlike [15], we estimate the MA only once and they remain fixed
along the whole sequence.

Local map optimization is usually performed in the back-
end to reduce the errors produced during the tracking stage. In
this regard, some approaches refine the pose of some previous
frames after tracking the MA. For instance, in [16], the authors
propose a line-based local optimization method to refine only
the translation. However, the rotation is still computed using the
decoupled tracking strategy. Moreover, other approaches [6],
[14] perform this local optimization by combining point and
plane features in conjunction with structural constraints, which
have been shown to achieve better results than the decoupled
scheme [14].

There exist indoor environments that do not strictly conform
to the MW assumption. In these cases, the performance of
approaches purely based on it degrades, even leading to tracking
failures. To overcome this issue, Zhang et al. [6] propose using
parallel and perpendicular constraints as an alternative to the
MW assumption. Despite its advantages, this method can not
reduce the long-term rotation error as the MW assumption does.
Another solution is proposed in [ 13], where the authors use either
a decoupled or a non-decoupled tracking strategy depending on
whether the scene meets the MW assumption. These strategies
permit these works to not only focus on a specific environment.
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Fig. 2. Overview of MSC-VO.

The related works reviewed above suggest the use of the
MW assumption to increase the localization accuracy of VO and
SLAM methods. However, using this assumption as a primary
source in the tracking procedure can lead to failures in some
scenes where the MW assumption is not satisfied, what can
restrict those solutions for certain specific environments. As
a solution, we propose the incorporation of the MA in local
map optimizations. Additionally, we take inspiration from [14],
which reports the structural constraints as beneficial for the pose
refinement process. To this end, we propose a novel local map
optimization approach that combines the point and line repro-
jection error, the MA alignment and the structural constraints of
the scene. Allowing that, the punctual dissatisfaction of some
of these constraints does not affect the overall performance. As
a result, our method leads to higher localization accuracy and
allows working in a wider range of scenarios.

III. MSC-VO OVERVIEW

MSC-VO is built on top of the tracking and local mapping
components of ORB-SLAM?2 [2]. Therefore, it comprises two
threads running in parallel, as it is illustrated in Fig. 2. Further
details on MSC-VO can be found next.

A. Tracking

The tracking thread is in charge of estimating the position of
every frame captured. Additionally, this module decides whether
a new keyframe needs to be created. It also associates each new
map line with one of the MA, if possible.

1) Feature Extraction: Every frame I; coming from the
RGB-D sensor at time ¢ consists of a colour image I{ and a
depth image I¢. Point and line features are extracted from I¢.
Points are detected and described using ORB [17], while lines
are detected using the Line Segment Detector (LSD) [18] and
described using the binary form of the Line Band Descriptor
(LBD) [19]. In the following, the location of a point ¢ in image
coordinates is denoted as p;, while each line segment j detected
in the image plane is represented by a start point s; and an end
point e;. Additionally, the normalized line [; is expressed as:

ej—sj

llej — sl
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2) 3D Feature Position Estimation: Once points and lines
have been detected and described, their 3D positions in camera
coordinates are obtained. A point p; is backprojected using as
depth the value corresponding to its 2D position in I¢. The
resulting 3D position in camera coordinates is denoted as Py
Since lines are more affected than points by depth discontinuities
and occlusions, this simple procedure can end up with inaccurate
3D lines. To reduce this effect, we propose a robust two-step
method to compute the 3D line endpoints.

First, for every line segment j, we calculate an initial 3D
position for its endpoints, denoted by {S§, E }, by backproject-
ing a subset of the points that conforms the line in the image
and, next, performing a robust fitting step as in [14]. The 3D
normalized line L] is computed similarly to (1). Next, we employ
the structural constraints of the scene to refine each detected line.
We start by associating parallel and perpendicular lines. To this
end, for every possible pair of lines (LS,, LS) detected in the
current image, we compute the cosine of the angle between the
two direction vectors by means of the dot product:

c cy L7Cn : Lfm
08 W L) =z LT @

We choose only those pairs (L¢,, L¢) whose cosine value
is close to 0 or 1 representing, respectively, perpendicular or
parallel lines. The selected pairs are employed to refine their
line endpoints by means of non-linear optimization. We use the
Levenberg—Marquardt algorithm implemented in g20 [20] to this
end. Formally, we define the orientation discrepancy d between
lines L¢, and LY as:

d(Lg,,L:) = |cos (L5, L) | - 3)

Letus denote I | and | as the sets of, respectively, valid per-
pendicular and valid parallel line pairs. Given a pair (LS,, LS) €
L, the error term E#@n is defined as:

EL

m,n

= d(L¢

m>

L5) - wit @)

n

where w,, weights the error term in accordance to the line re-
sponse returned by the LSD algorithm for segment n. Similarly,
for another pair (L, , Ly,) € L, the error term Eﬂnn is defined
as follows:

El,, =

m,n

where d(-,-) € [0, 1].

We define L as the set of variables to be optimized, which
includes those lines that have at least one structural association
eitheron I | or I ;. We then compute the optimal line end points
of L by minimizing the following cost function:

> pE)+ Y e(EL) |, ©

(4,5)€l L (k,0)€Ly

1—d?(Le,, L

m?

&) w,t )

L = argmin

where p is the Huber loss function to reduce the influence of
outliers. Fig. 3 summarizes the notation of points and lines
regarding frame coordinates, and the two error terms defined
in this section. As it will be shown in Section IV, using the
outlined procedure, the 3D lines estimation accuracy improves,
benefiting the whole system.
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Fig. 3. The left drawing illustrates the notation used for 2D and 3D features,
while the right drawings illustrate the line endpoints error terms. S]? and E]c are

| el
Qe —
55 ~ )
‘ »Lj

.- |pe Lil .. N
! P S5 E}
Tl 5
ld‘(R,,tt) * -

the line endpoints to optimize. The right-top drawing shows the error term Ef— .
as the cosine of the angle between the normalized line defined by S and E
and a perpendicular line, shown in green, for a perpendicular association L;.

The right-bottom drawing illustrates the parallel error term E; . calculated as

the sine of the angle between the normalized line defined by S} and £ and a
parallel association L. (Both cases assume w = 1.).

3) Pose Estimation: Once features are extracted, an opti-
mization procedure is carried out to estimate the current camera
orientation R; € SO(3) and translation t, € R®. Initially, map
points and lines observed in the previous frame are projected to
the current frame, assuming a constant velocity motion model.
Next, two sets of 2D-3D correspondences, one for points as in [2]
and one for lines as in [5], are computed. These associations are
then employed to optimize the current camera pose, minimizing
the following cost function:

{Re, te} = argmin [ Y p(ED + Y p(E)) |,

et iclP jev

where PP and V are, respectively, the sets of all point and line
matches. The error term for the observation of a map point ¢ is
defined as:

El = ||p; — n(Re PP + ) ||* - wi !, (8)

where P € R3 is the point in world coordinates corresponding
to p; € R? and w; weights the error term in accordance to
the response of the ORB detector. The projection function 7
transforms a 3D point P} in camera coordinates into the image
plane using the camera calibration parameters [21]. On the other
side, the error term for an observed map line j in the current
frame is defined as:

) ) 2 _
E; = Hn7 -W(RtSJ’»‘ +t), nj -W(RtEJ’»‘ + tt)” ‘W L9

where LY = {S}’, E}} is the map line in world coordinates
that matches the 2D segment /; with normal vector n;. Once the
camera pose has been estimated, we project the local map into
the current frame to obtain more correspondences, as performed
in [2]. The pose is optimized again with the resulting matches.

4) Keyframe Insertion: Once the camera pose has been es-
timated, the current frame is evaluated to decide whether it
should be considered as a new keyframe. We use a similar policy
as ORB-SLAM?2 [2], but incorporating line correspondences.
Unlike ORB-SLAM2, we do not use the condition of a minimum
number of features tracked. The rationale behind this idea is that
the proposed method is focused on low-textured environments,
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where typically the number of features tracked per frame can
change drastically between scenes. Therefore, it is not possible
to fix a reasonable threshold. Instead, we propose to use the ratio
between the current frame features that are being tracked in the
map, and the sum of these features with the ones that could be
potentially created. Once a new keyframe is generated, points
and lines are included in the local map and redundant features are
culled, as performed in [2]. For each new map line, we search for
parallel or perpendicular line correspondences in the local map.
Additionally, each line is also associated to an MA, if possible,
as explained in the next section.

5) Manhattan Axes Association: Given M = {MA,,
MA;,MA,} as the set of Manhattan Axes, when a new
keyframe is inserted, each new map line j is associated to axis
M; € M whenever possible. To this end, we compare every
line L7 with each of the three axes: if the value of expression in
(3) gets close enough to 1 for axis MAy, the line is considered as
parallel to MAy, and they are matched, i.e. M; = MAj,. These
associations are used during local map optimization to reduce
the camera rotation drift. Notice that, given the combination
of structural constraints and this MA alignment, our approach
is able to operate even if these axes are not available. The
procedure to estimate these MA is explained in Section III-B2.

B. Local Mapping

Whenever a keyframe is inserted, the local mapping thread
refines recent keyframe poses and landmarks by a multi-graph
optimization process. Furthermore, this thread also estimates
the reference MA, if required. Finally, redundant keyframes are
culled using the strategy introduced in [2]. Further details can
be found next.

1) Local Map Optimization: Once keyframe k is generated,
the local optimization procedure refines its pose along with
the poses of a set of connected keyframes /. obtained from
a covisibility graph [2] and all the map points P and lines £
seen by those keyframes. Other keyframes that observe these
points and lines but are not connected to k, denoted by Ky, are
included in the optimization, but their poses remain fixed. We
denote P, and Vj, as the sets of matches between, respectively,
points and lines in P and £ and features in keyframe k. To
introduce the structural constraints of the scene into the opti-
mization, we define L} and L} as the sets of perpendicular
and parallel pairs of lines in £, respectively, co-observed in
keyframe k. Finally, we denote as M the set of map lines that
are associated to a MA and that are seen by any keyframe in /C...
DefiningI' = { P}, LY, Ry, 1, |i € P,j € L,1 € K.} as the set
of variables to be estimated, the optimization problem is defined
as:

I' = argmin

. (2 r®E)+ D e (E)

ke{K.UKs} \i€Pk jeVy
1 I
+ Z Z p(E7;) + Z p (E”)
zeke \ (4,5)€L? (i.)eLf
+> o (El,) (10)
JjeM
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1 I
where E”, E”,

4), (5), (8) and (9), and the MA alignment error Eg M, is
the error term corresponding to a map line 7 and its associated
Manhattan axis M; € M, calculated using (5).

2) Manhattan Axes Estimation: As already said, the Man-
hattan Axes comprise a set of three orthogonal directions, in
world coordinates, which represent the main scene directions.
These directions remain fixed over time and, therefore, the MA
extraction procedure is performed only once during the whole
sequence. Their estimation should be very accurate to prevent
misalignments during optimization steps. In this respect, this
work proposes a coarse-to-fine MA estimation strategy, where
the estimation at the coarsest level is obtained extending the work
by Kim et al. [10]. The estimated MA are then refined by con-
sidering multiple line observations along different keyframes.

For a start, a first estimation of the MA is computed from the
first keyframe once it is available using the Mean Shift-based
method proposed in [10]. In this first stage, the only features
involved are the line direction vectors and the surface normal
vectors for a selection of points defined over a grid. The normal
vectors are calculated using a modified version of the approach
proposed in [22], which is based on integral images to speed up
calculations. This procedure is repeated for the next keyframes
until valid, though typically noisy, MA are obtained.

Once the local map comprises a sufficient number of
keyframes, being denoted by KCp;, a non-linear optimization
procedure is performed in a second MA refinement stage, using
hence the inaccurate MA computed in the first stage as initial
guess. Given M as the set of MA, and defining V,?’lAi as the set
of map lines associated to the Manhattan axis MA; observed in
keyframe %, the optimization problem can be stated as follows:

E? and Ez were respectively defined in

M= ammmin 3 [ S @) ¢ Y )
ke jGVI:/IAO jEV)]:IAl
+ > p(EM) ] (11)

MAg
jev,

where the error term of a line j associated to the axis M; € M
is given by:
(12)

E] E”M""EJJVI +E]M//’

being M, and M;, the two other MA non-associated to line j.
These two last terms enforce the orthogonality among the finally
resulting axes. We reduce further the orthogonality error of the
MA by means of Singular Value Decomposition (SVD), as also
performed in [9], [10], [13].

IV. EXPERIMENTAL RESULTS

To demonstrate the performance of MSC-VO, we conduct
various experiments in both synthetic and real image sequences.
Additionally, we compare its localization accuracy with some
state-of-the-art VO and visual SLAM systems by means of the
following datasets:
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Fig.4. (left) The MA maybe absentin a scene, e.g. a frame of the fr3-longoffice
sequence. (right) Trajectory estimated by MSC-VO for this sequence, where no
tracking failures are observed.

1) ICL-NUIM [23]: This is a synthetic dataset which com-
prises two main scenes, the living room and the office,
coined in our experiments as [r and of, respectively.
Furthermore, this is an indoor dataset with large struc-
tured areas, where the MW assumption and the structural
constraints are highly present. Additionally, this dataset
involves some low-textured challenging elements such as
floors, ceilings and walls.

2) TUM RGB-D benchmark [24]: This is also an indoor
dataset that contains several sequences with different struc-
ture, illumination and texture conditions. Unlike ICL-
NUIM, this is a noisy dataset since a real RGB-D sensor
was used.

3) TAMU RGB-D [25]: This dataset contains several in-
door sequences, among which we employ Corridor-A and
Entry-Hall to validate the final trajectory error (the travel
distances are, respectively, 82 m and 54 m).

Regarding the MSC-VO parameters, we have used the default
values provided by ORB-SLAM?2 authors for the common parts,
whereas the remaining parameters have been set experimentally
from a single dataset, and they have been kept unaltered for the
rest of sequences.

To evaluate the overall performance of MSC-VO, for the ICL-
NUIM dataset and the TUM RGB-D benchmark, we use the
Root-Mean-Square Error (RMSE) of the Absolute Trajectory
Error (ATE) expressed in meters, as computed by the RGB-
D TUM benchmark tools [24]. Regarding the TAMU RGB-D
dataset, we provide the Trajectory Endpoint Drift (TED) [25],
computed as the Euclidean distance between the starting and
end points of the path. All the experiments have been performed
on an Intel Core 17-9750H @ 2.60GHz / 16 GB RAM, without
GPU parallelization.

A. General Performance

For a start, Fig. 4 illustrates the fact that the MA may be absent
in a scene, leading to tracking failures for some solutions. In the
case of MSC-VO, the fact of involving the MA only in local
map optimizations can prevent these failures from occurring. In
Fig. 4 (left), we show a frame of the fr3-longoffice sequence,
for which the MW assumption is not very appropriate. In the
image, green, red and blue colours denote the correspondences
of a line with a single Manhattan axis, whereas yellow is for 3D
lines that do not correspond to any axis and orange is for lines
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TABLE I
RMSE OF THE ATE OF MSC-VO (IN METERS)

Sequence PL-VO | PL-VO-Depth | MSC-VO-OR | MSC-VO
Ir-ktO 0.051 0.024 0.012 0.006
Ir-kt1 0.064 0.048 0.013 0.010
Ir-kt2 0.054 0.030 0.010 0.009
Ir-kt3 0.061 0.057 0.040 0.038
of-kt0 0.047 0.032 0.030 0.028
of-ktl 0.056 0.053 0.025 0.017
of-kt2 0.040 0.039 0.019 0.014
of-kt3 0.042 0.038 0.031 0.010
frl-xyz 0.015 0.013 0.012 0.010
frl-desk 0.023 0.022 0.024 0.019
fr2-xyz 0.011 0.009 0.006 0.005
fr2-desk 0.121 0.060 0.023 0.023

large-cabinet 0.173 0.152 0.131 0.120
fr3-longoffice 0.108 0.096 0.034 0.022
g’ *T— pLvo
T *1 — mscvo
= 31
5 Mt
5 1
& ol f i i i .
E 02549 PL-VO
§ 0204 — Mscvo \
“CJ 0.15
2 o104
©
E 0.05
©
}: 0.00 ; . . . .
0 20 40 60 80
Time (s)
Fig. 5. Rotation and translation error over time for PL-VO and MSC-VO on

the fr3-longoffice dataset.

TABLE II
TED ON THE TAMU RGB-D DATASET (IN METERS)

Sequence PL-VO | PL-VO-Depth | MSC-VO-OR | MSC-VO
Corridor-A 2.76 2.29 1.38 0.91
Entry-Hall 1.89 1.70 1.26 1.07

whose 3D position has not been estimated. Fig. 4 (right) shows
that MSC-VO can estimate the whole trajectory.

Next, we compare several versions of MSC-VO to show the
effect of the different contributions: PL-VO is the part of MSC-
VO that just combines point and line features; PL-VO-Depth
combines PL-VO with the proposed 3D line endpoint estimation
method; MSC-VO-OR corresponds to a modified version of the
proposed solution, where, if a line is associated with an MA
and, at the same time, it includes structural constraints, only
the MA constraints are considered during the optimization (10);
finally, the last case is the full version of MSC-VO. Estimation
performance results for multiple sequences can be found in
Table I. Moreover, Fig. 5 illustrates the rotation and translation
error over time for PL-VO and MSC-VO on the fr3-longoffice
dataset. Taking PL-VO as the baseline, MSC-VO reduces on
average 76.5% and 80% the rotation and translation errors for
this dataset.

Table II reports on the TED for each version of MSC-VO
for the TAMU RGB-D dataset to assess its performance in long
sequences. It is noticeable that each variation of our approach
helps to reduce the accumulated drift along the trajectory.
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TABLE III
MEAN EXECUTION TIMES (TUM RGB-D BENCHMARK)

Mean Executxion Time (ms)
Tracking Local Mapping
Feat. Extrac. Camera Total Local Map MA
and 3D Pose Pose (Hz) | Optimization | Estimation
Estimation Estimation Z pumizatt matt
23.2 29.1 18 152.6 206.6
TABLE IV

COMPARISON WITH OTHER APPROACHES (TED IN METERS)

Sequence MSC-VO | ManhSLAM [13] ORB-SLAM2 [2]
Corridor-A 0.91 0.51 3.17
Entry-Hall 1.07 1.52 2.18

On the other side, Fig. 6 shows local maps from the same cases
as above for the fr3-longoffice sequence. The first and second
plots result from, respectively, PL-VO and PL-VO-Depth. In
the former case, noise from lines depth calculation affects the
local map and, consequently, also the pose estimation accuracy.
In the second case, this noise is of a lower magnitude, but pose
inaccuracies are still observed. The third plot results from MSC-
VO with the best local map and the highest localization accuracy.
These results show that the local map optimization procedure not
only improves the camera pose accuracy, but also refines the map
lines. As aresult, the misalignment that affects the PL-VO-Depth
case is notably reduced. To conclude, the fourth plot shows the
trajectories from each approach together with the ground truth,
for a further understanding of the pose accuracy achievable on
each case.

To finish, average running times for the main stages of
MSC-VO can be found in Table III. The averages result from
three different sequences of the TUM RBG-D benchmark. As
expected, adding line features into point based VO or SLAM
methods improves the accuracy and the robustness, though at
the expense of increasing the computational complexity [4].
In more detail regarding our solution: (1) the robust fitting
method used for 3D line pose estimation increases the low times
required to extract line features and adds execution time to the
feature extraction stage over other solutions; (2) regarding MA
estimation, its execution time is high due to 180.4 ms that are
required by the coarsest estimation step, although it needs to be
computed only once (in scenarios where the MW assumption
holds); and (3) despite local map optimizations require more
time than other, more traditional methods based on local bundle
adjustment, it can still be fast enough, as they run in a parallel
thread. As a general comment, the final frame rate achieved is
around 18 Hz.

B. Comparison With Other Solutions

Table V compares MSC-VO regarding localization accuracy
with other state-of-the-art approaches, for which the results
reported in the original works are reproduced. Best performances
are indicated in bold, whereas the second best is shown in bold
blue, n.a. refers to a not-available value, and x reports a tracking
failure. The left side of the table reports on solutions based
on the MA assumption that do not perform any global map
optimization or loop closure detection (LCD), while the right
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(left) Local maps for the fr3-longoffice sequence and different versions of MSC-VO: 1st — only using points and lines (PL-VO), 2nd — PL-VO using the

proposed line depth extraction procedure (PL-VO-Depth), 3rd — full MSC-VO. (right) 2D trajectories for PL-VO, PL-VO-Depth and MSC-VO, respectively shown

in blue, green and red, and the ground truth in dashed grey.

TABLE V
RMSE OF THE ATE FOR MSC-VO AND OTHER STATE-OF-THE-ART APPROACHES (IN METERS)

Without Global Optimization nor LCD With Global Optimization and/or LCD
Sequence MSC-VO OPVO [9] LPVO[10] MWO [8] SReg[l4] ManhSLAM [13] | ORB-SLAM2 [2] PS-SLAM [6] L-SLAM [11] InfiniTAM [26]
Ir-kt0 0.006 X 0.015 X 0.006 0.007 0.025 0.016 0.012 X
Ir-kt1 0.010 0.04 0.039 0.32 0.015 0.011 0.008 0.018 0.027 0.006
Ir-kt2 0.009 0.06 0.034 0.11 0.020 0.015 0.023 0.017 0.053 0.013
Ir-kt3 0.038 0.10 0.102 0.40 0.012 0.011 0.021 0.025 0.143 X
of-kt0 0.028 0.06 0.061 0.31 0.041 0.025 0.037 0.032 0.020 0.042
of-kt1 0.017 0.05 0.052 1.10 0.020 0.013 0.029 0.019 0.015 0.025
of-kt2 0.014 X 0.039 X 0.011 0.015 0.039 0.026 0.026 X
of-kt3 0.010 0.04 0.030 1.38 0.014 0.013 0.065 0.012 0.011 0.010
frl-xyz 0.010 n.a. n.a. n.a. X 0.010 0.010 0.010 n.a. n.a.
fr1-desk 0.019 n.a. n.a. n.a. X 0.027 0.022 0.026 n.a. n.a.
fr2-xyz 0.005 n.a. n.a. n.a. X 0.008 0.009 0.009 n.a. n.a.
fr2-desk 0.023 n.a. n.a. n.a. X 0.037 0.040 0.025 n.a. n.a.
snot-far 0.077 0.13 0.075 0.47 0.022 0.040 X 0.020 0.141 0.037
snot-near X 0.16 0.080 0.95 0.025 0.023 X 0.013 0.066 0.022
large-cabinet 0.120 0.51 0.279 0.83 0.071 0.083 0.124 0.079 0.140 0.512
fr3-longoffice 0.022 X 0.19 X n.a. 0.049 0.028 n.a. n.a. n.a.

% and n.a. respectively stand for tracking failure and not available value. The best result for each sequence is shown in bold orange and the second best in bold blue.

side of the table is for solutions that benefit from those stages.
As can be observed from the ICL-NUIM dataset, the proposed
method, which only uses point and lines, achieves competitive
results in contrast to other methods that rely on points, lines
and planes, such as [13], [14]. Conversely, from the fr/ and fr2
sequences, we observe that methods relying on planes are not
able to correctly estimate the MA. This is due to the fact that
these methods fail to find or track orthogonal planes along the
sequence. Contrarily, our approach can estimate the MA on these
scenarios, except for the fr2-desk sequence, although the struc-
tural constraints are fully applicable in this sequence, allowing
our approach to remain operational and outperform the rest of
solutions. MSC-VO produces a tracking failure in the snot-near
sequence. We do not observe this behaviour in works relying on
planar features, due to the continuous presence of orthogonal
planes in the sequence. It is noteworthy that MSC-VO compares
favourably with more sophisticated solutions (right side of the
table) even without global map optimization or LCD stages.
Finally, Table IV compares the performance of MSC-VO with
other solutions in long sequences. On the one hand, we have
observed that in the Corridor-A sequence most part of the error
is due to tracking failures: in these cases, the proposed local
map optimization can not fix the problem since no lines are
detected in the axis where the errors take place. Despite this
is not a common situation, we consider that planes can help to
avoid this behaviour due to the continuous detection of the floor.
However, it is important to remark that this dataset contains
noisy depth data, which highly affects plane detection, and,

therefore, the MA assumption does not hold for all frames. As
an example, [13] tracks the pose using the MA assumption in,
respectively, 15.1% and 12.5% of the frames of Corridor-A and
Entry-Hall. However, MSC-VO uses the MA assumption in all
the frames that at least contain one single line associated to an
MA, which represents 100% of the frames in both sequences.

V. CONCLUSION AND FUTURE WORK

In this work, we have described MSC-VO, a VO that improves
camera pose estimation accuracy in human-made environments.
This is achieved by a combined point and line VO approach
that leverages the structural regularities of the environment as
well as the satisfaction of the MW assumption. On the one
side, the structural constraints are used to improve line depth
extraction and MA estimation. On the other side, these structural
constraints are combined with point and line reprojection errors
together with the MW assumption for local map optimization.
All these contributions have been shown to increase the accuracy
of 3D map lines position estimation and the computed trajectory
for MSC-VO. Furthermore, contrary to other state-of-the-art
works that use the MW in the tracking stage, our pipeline is
designed to deal with the absence of the MA, allowing us to
work in a wider range of environments.

Regarding future work, we plan to integrate MSC-VO with an
incremental loop closure detection strategy. We are also intent
to make use of the structural constraints and the MA alignment
for global map optimization.
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