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Abstract
Hand-crafted point descriptors have been traditionally used for visual loop closure detection. However, in low-textured
environments, it is usually difficult to find enough point features and, hence, the performance of such algorithms degrade.
Under this context, this paper proposes a loop closure detection method that combines lines and learned points to work,
particularly, in scenarios where hand-crafted points fail. To index previous images, we adopt separate incremental binary
Bag-of-Words (BoW) schemes for points and lines. Moreover, we adopt a binarization procedure for features’ descriptors to
benefit from the advantages of learned features into a binary BoW model. Furthermore, image candidates from each BoW
instance are merged using a novel query-adaptive late fusion approach. Finally, a spatial verification stage, which integrates
appearance and geometry perspectives, allows us to enhance the global performance of the method. Our approach is validated
using several public datasets, outperforming other state-of-the-art solutions inmost cases, especially in low-textured scenarios.

Keywords Appearance-based localization · Loop closure detection · Visual place recognition · Simultaneous localization
and mapping

1 Introduction

Simultaneous Localization and Mapping (SLAM) is a fun-
damental task in robotics that allows an agent to build a map
of an unknown environment while, at the same time, tracks
its position within this map (Cadena et al. 2016). SLAM
systems typically rely on Loop Closure Detection (LCD)
methods to identify when the robot has returned to a previ-
ously visited place (Stewart et al. 2002). As it is well known,
the accumulated drift can be greatly reduced using loop clo-
sure information. Additionally, LCD is also used for robot
relocalization after a tracking failure (Williams et al. 2011).
Cameras have been fundamentally used in the last decade,
among other sensors that can be adopted for LCD, due to
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the richness of imagery as well as the low cost of these
devices nowadays. These methods are globally referred to
as appearance-based LCD (Angeli et al. 2008; Milford and
Wyeth 2012; Cummins and Newman 2011; Galvez-López
and Tardos 2012; Khan and Wollherr 2015; Garcia-Fidalgo
and Ortiz 2018; Bampis et al. 2018).

The performance of appearance-based LCD methods is
mainly determined by: (1) the image description technique
adopted; and (2) the ability of the approach to efficiently
index previous images (Garcia-Fidalgo and Ortiz 2015).
Concerning image description, hand-crafted point features
have extensively been used for LCD tasks. Among these
solutions, binary descriptors (Calonder et al. 2010; Rublee
et al. 2011) have progressively emerged as an alternative to
real-valued descriptors (Lowe 2004; Bay et al. 2006) given
their demonstrated advantages in computational terms.More
recently, the aforementioned techniques have successfully
been replaced by methods based on Convolutional Neural
Networks (CNN), which have proven to be more robust
to illumination and viewpoint changes than hand-crafted
features (DeTone et al. 2018). CNN-basedmethods have typ-
ically been used as holistic descriptors. Other approaches
(DeTone et al. 2018; Dusmanu et al. 2019; Revaud et al.
2019) have been recently shown to be able to detect and
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Fig. 1 Lines can support point features in low-textured scenarios:
(left) query image, (right) loop-closing candidate image selected by
our approach. Points and line segments are labelled as circles and lines,
respectively. Matchings found are indicated by the same color in both
images

describe simultaneously interest points in an image with
adequate performance; none of them, however, produce
binary descriptors. On the other side, while hand-crafted
point features have shown impressive results working on
well-textured scenarios (Mur-Artal and Tardós 2017), their
performance decreases when dealing with low-textured sce-
narios, where the number of feature points detected results
to be rather low (Pumarola et al. 2017). Precisely because of
their nature, low-textured, human-made environments usu-
ally exhibit structural regularities that can be described using
line features. All this has taken us to the combination of
both visual perspectives, lines and point features, in order
to enhance loop closing performance and widen the range
of environments that can be addressed (Company-Corcoles
et al. 2020). By way of illustration, Fig. 1 shows the ben-
efits of combining both kinds of features in a low-textured
scenario.

In reference to image indexing, arguably the most used
scheme is the combination of theBag ofWordsmodel (BoW)
[50], Nister and Stewenius (2006)with an inverted file. In this
model, descriptors are quantized into visualwords, according
to the available visual vocabulary. Images are then described
by a histogram of occurrences of each visual word in the
image. Depending on how this visual vocabulary is gener-
ated, the available solutions can be classified as either off-line
or on-line (Garcia-Fidalgo and Ortiz 2015). The off-line
approach needs a training phase to build the visual vocabu-
lary, which can be particularly time-consuming, and besides
makes the resulting solution highly dependent on the diver-
sity of the training set (Nister and Stewenius 2006). As an
alternative, the on-line approach builds the visual vocabulary
incrementally, as the robot navigates, which helps to solve
the aforementioned issues. A fusion strategy is additionally
required to obtain a consolidated list of loop closure candi-
dates when different sorts of features are involved, maybe by
means of several BoW instances, one for each kind of feature
(Zuo et al. 2017; Gomez-Ojeda et al. 2019; Han et al. 2021).

Standard BoW schemes do not account for the spatial dis-
tribution of features in the image, which tends to reduce

their accuracy under severe perceptual aliasing conditions
(Galvez-López and Tardos 2012; Garcia-Fidalgo and Ortiz
2018). Due to this reason, a final spatial verification step
is usually performed to check consistency at the geometric
level for the resulting correspondences between the query
and candidate images. In this regard, the most popular
approach consists in using RANdom SAmple Consensus
(RANSAC) (Fischler and Bolles 1981) to check whether
the image features obey a specific motion model between
images. Typically, this loop closing validation step degrades
in performance when dealing with either non-rigid image
transformations or a high number of outliers. To tackle
this problem, some recent approaches check the consistency
between images for local neighborhood structures around the
correspondences found (Lowry and Andreasson 2018; Ma et
al. 2019; Zheng and Doermann 2006; Bian et al. 2017).

Under this context, we introduce an appearance-based
loop closure detection algorithm, named LInes and POints
for Low-Textured scenarios’ Loop Closure Detection (LiPo-
LCD++). In our approach, binarized CNN-based point
descriptors and binary line descriptors are indexed using
an incremental Bag-of-Binary-Words scheme and combined
through a query-adaptive late fusion strategy in order to
obtain an integrated list of loop closure candidates. After
choosing an image as a final loop candidate, the loop clo-
sure is further validated performing a spatial verification
procedure which naturally integrates point and line features.
Our approach, as it is shown in the experimental results sec-
tion, outperforms other solutions for generic environments,
exhibiting a remarkable performance level for low-textured
scenarios.

A preliminary version of LiPo-LCD++ was introduced in
Company-Corcoles et al. (2020). In this paper we extend this
work with the following contributions:

– A binarization procedure to transform aCNN-based real-
valued local descriptor (DeTone et al. 2018) into a binary
descriptor. This binarization procedure allows us to com-
bine the advantages of CNN-based feature descriptors
with the benefits of a binary visual vocabulary.

– A query-adaptive late fusion approach tomerge loop can-
didates retrieved using lines and points independently.
This fusion strategy permits us to adapt our system
dynamically to the environment by weighing automat-
ically the candidates according to the images contents in
terms of lines and point features, and, thus, increasing its
performance for a wider range of scenarios.

– A novel spatial verification method which combines
appearance and geometric information of feature points
and lines. This method leads to the detection of a
larger number of inliers when dealing with lines and
attains higher accuracy in general. Moreover, we pro-
pose a fusion of feature points and lines involving local
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neighborhood structures. This allows us to increase the
efficiency of usual spatial verification stages for, partic-
ularly, low-textured environments.

Additionally, we report on an extensive set of experiments
to validate the performance, adaptability and effectiveness
of LiPo-LCD++. As it is shown in the experimental results
section, our solution compares favourably with other state-
of-the-art methods in the field.

The rest of the paper is organized as follows: Sect. 2
overviews the most important works in the field; Sect. 3
describes the proposed approach, while Sect. 4 discusses on
a set of experimental results to evaluate LiPo-LCD++ per-
formance; finally, Sect. 5 concludes the paper and suggests
some future research lines.

2 Related work

Appearance-based loop closure approaches can be catego-
rized according to their image description method (Garcia-
Fidalgo and Ortiz 2015). In this regard, someworks (Sünder-
hauf and Protzel 2011;Milford andWyeth 2012;Arroyo et al.
2014) haveopted for global descriptors for imagedescription.
These descriptors are usually very fast to compute, though,
typically, they are more sensitive to viewpoint and illumina-
tion changes than local features. Due to these reasons, point
local descriptors, either real-valued (Cummins and New-
man 2008; Angeli et al. 2008; Cummins and Newman 2011;
Tsintotas et al. 2019) or binary (Galvez-López and Tardos
2012; Mur-Artal and Tardós 2014; Khan andWollherr 2015;
Garcia-Fidalgo and Ortiz 2018), have been widely used in
the literature during last decades. More recently, approaches
based on CNNs have emerged as an alternative, motivated by
their demonstrated robustness to visual appearance changes
(Chen et al. 2014; Sünderhauf et al. 2015; Chen et al. 2017;
Kenshimov et al. 2017; Lopez-Antequera et al. 2017; Yue
et al. 2019). These solutions typically employ CNNs to
extract a global descriptor of the image, what makes more
difficult the implementation of a spatial verification stage.

The BoW model [50], Nister and Stewenius (2006), used
along with an inverted file, is the most used indexing scheme
for appearance-based LCD (Garcia-Fidalgo and Ortiz 2015;
Lowry et al. 2016). As discussed earlier, depending on how
the visual vocabulary is generated, LCD approaches are clas-
sified as either off-line or on-line methods. Off-line methods
(Cummins and Newman 2011; Galvez-López and Tardos
2012; Mur-Artal and Tardós 2014; Bampis et al. 2018) gen-
erate the vocabulary during a training phase. Conversely,
on-line methods (Angeli et al. 2008; Labbé and Michaud
2013; Khan and Wollherr 2015; Garcia-Fidalgo and Ortiz
2018; Tsintotas et al. 2018; Tsintotas et al. 2019) build the
visual vocabulary as images are received.

Sequence-based matching is a well-known technique that
has proven to be useful in LCD approaches (Milford and
Wyeth 2012). Recently, Garg andMilford (Garg andMilford
2021) introduced the concept of temporal matching in a hier-
archical scheme. In their solution, a learning-based sequence
descriptor is first employed to select a number of place candi-
dates. A learnt single image descriptor is next used to decide
the final match. Unlike these works, our approach employs
two types of features and involves temporal information in
the decision after selecting a set of candidates. Additionally,
we do not rely on global descriptors.

Within the context of LCD, binarizing CNN features has
been adopted by multiple solutions. For instance, Arroyo
et al. (2016) applies min-max normalization to the vector
resulting from the concatenation of several convolutional
layers. The final descriptor is next obtained by randomly
selecting a specific set of features and thresholding on each
component. More recently, Garg and Milford (Garg and
Milford 2020) describe a coarse quantization-based hashing
scheme, which employs PCA for dimensionality reduction.
In Neubert et al. (2019), the authors propose a sparsified
binary adaptation of Locality-SensitiveHashing (LSH) using
random projections, while other works opt for a CNN-based
approach to directly generate a binary descriptor (Lin et al.
2016; Lin et al. 2019). The main difference between our
approach and these solutions is that they result into a global
binary descriptor for the whole image. Furthermore, unlike
our solution, someof the aforementionedworks (Arroyo et al.
2016; Garg and Milford 2020; Neubert et al. 2019) require a
dimensionality reduction stage.

Some SLAM approaches (Pumarola et al. 2017; Zhang
et al. 2019) have benefited from the combination of points
and lines for image description. However, during the LCD
stage, they only rely on point features, discarding line infor-
mation that can be useful for some environments, unlike our
approach (Company-Corcoles et al. 2020), and others that
adopt a dual scheme for LCD (Gomez-Ojeda et al. 2019;
Zuo et al. 2017; Han et al. 2021). Our approach resembles
the idea of combining lines and points described in these
works, though it differs in multiple aspects, such as (1) the
point features that are employed, (2) how the visual vocab-
ularies are built, (3) how image scores are calculated from
the visual vocabularies and later combined, and (4) the spa-
tial verification process. All these points are revised in the
following:

– As for the generation of the vocabulary, all the above-
mentioned works rely on an off-line method which, as
commented previously, makes them highly dependent
on the diversity of the training set used. This depen-
dence does not appear in ourmethod thanks to the on-line
vocabulary acquisition approach.
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– Moreover, all of them make use of ORB (Rublee et al.
2011) to detect and describe point features. Conversely,
we use a CNN-based method which is more tolerant to
appearance changes.

– Differentweighing schemeshavebeenproposed tomerge
lists of candidates. For example, Zuo et al. (2017) use
static weights for each visual vocabulary, which are
empirically adapted for each dataset. Since this does not
consider the importance of each type of feature for every
specific query image, Han et al. (2021); Gomez-Ojeda et
al. (2019) propose dynamicweighingmethods which can
be adapted to eachquery image.More precisely,Han et al.
(2021) computes weights from the entropy of the features
found in the query image. Contrarily, Gomez-Ojeda et al.
(2019) calculates the dynamic weights according to the
fraction of features found, along with their distribution
in the query image. Furthermore, dynamic weighing is
combined with static weighing. Despite their good per-
formance, these approaches evaluate the importance of
eachvisual feature during feature extraction,whichmight
not correspond to the actual importance, derived from the
scores resulting from image candidates retrieval, as it is
done in LiPo-LCD++.

– Finally, regarding the final spatial verification step, Zuo
et al. (2017); Gomez-Ojeda et al. (2019) require a pre-
vious pose estimation, as well as depth estimates for
the features involved. Others, such as Han et al. (2021),
adopt the most widely used spatial verification approach,
based on a RANSAC-based estimator of the fundamental
matrix. We instead adopt a strategy based on analyzing
the preservation of the topological relationships between
neighbouring features. Unlike these approaches, we only
use the appearance to validate loop closures. Further-
more, the proposed procedure can tolerate a high number
of outliers and non-rigid camera motions.

3 Proposed approach

Figure 2 illustrates LiPo-LCD++. As can be observed, two
sets of features, i.e. lines and points, are found in every new
image that is processed. Each of these features is described
by means of a binary descriptor, which is then used to: (1)
obtain a list of the most similar images according to this
visual cue; and (2) update the corresponding visual vocab-
ulary. Next, the two lists are merged using a scored-voting
procedure, giving rise to a combined list of loop-closing can-
didates. Subsequently, a temporal filter, based on the concept
of dynamic islands (Garcia-Fidalgo and Ortiz 2018), groups
those images close in time and prevent adjacent frames from
competing among them as loop candidates. To validate the
existence of a loop closure, the representative image of the
best island is selected as the final loop candidate image and
it is spatially assessed against the query image. We deal next
with the details of every step.

3.1 Image description

As stated previously, LiPo-LCD++ uses points and lines
to describe images. The rationale behind this is that the
combination of multiple and complementary descriptions
improves the performance and robustness of LCD methods
(Hausler and Milford 2020). By way of illustration, texture-
less scenes may be more distinctively described using lines
than only points, while other environments that lack structure
can be better described by means of point features. To this
end, in our solution, the image It at time t is described by
φ(It ) = {Pt , Lt }, being Pt a set of local keypoint descriptors
and Lt a set of line-segment descriptors.

3.1.1 Point description

Given the robustness shown by CNN-based methods,
we use the SuperPoint approach (DeTone et al. 2018) to
obtain a set of keypoints from the image under consider-
ation. SuperPoint is a learning-based feature detection and

Fig. 2 General overview of the proposed approach
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Fig. 3 Feature points found using: (left) ORB, 46; (center) SIFT, 61; and (right) SuperPoint, 87

description framework that is specially effective under illu-
mination and viewpoint changes. Furthermore, compared to
similar solutions such as R2D2 (Revaud et al. 2019) and D2-
Net (Dusmanu et al. 2019), SuperPoint detects and describes
features in an affordable time. In LiPo-LCD++, we use the
default model provided by the authors, which was trained
using a wide range of scenarios. This is to enhance the per-
formance of our approach in a larger range of environments,
in contrast to other CNN-based approaches, which are typ-
ically trained using a specific scenario. Figure 3 shows an
example of how SuperPoint detects, in an indoor scenario,
a higher number of features than other hand-crafted features
like ORB (Rublee et al. 2011) or SIFT (Lowe 2004). Besides,
we have observed that SuperPoint tends to find keypoints in a
more uniformway throughout the image than other detectors.

SuperPoint, similarly to other recent CNN-based
approaches for keypoint detection, produces real-valued
descriptors (DeTone et al. 2018; Dusmanu et al. 2019;
Revaud et al. 2019). In this work, we are interested in
binary descriptors to take advantage of their well-known
computational benefits. To this end, our proposal inspires
on other binary description methods (Calonder et al. 2010;
Rublee et al. 2011), which perform pairwise comparisons
between pixels within an image patch. In our case, we com-
pare the values of different components of the real-valued
descriptor. Formally,we arrange aD-dimensional real-valued
descriptor d ∈ R

D as a concatenation of 8-component M
subvectors: d = [d0, . . . , dM−1], with d j = [d j,0, . . . ,

d j,7], j ∈ {0, M − 1}. In this way, each 8-component vector
leads to an 8-bit string for each pair, which can be stored
using a single byte. Given two subvectors dx and dy from d,
their corresponding 8-bit string β is hence defined as

β(dx , dy) =
∑

0≤ i ≤ 7

2iτ
(
dx,i , dy,i

)
, (1)

where τ is a comparison test given by:

τ
(
dx,i , dy,i

) =
{
0 if dx,i < dy,i
1 otherwise

. (2)

Fig. 4 Overview of the descriptor binarization procedure. The differ-
ent colours denote the same position into the 8-component vector/8-bit
string. Darker and lighter colours correspond to, respectively, real and
binary values. In the drawing, β j = β(d℘ j,1 , d℘ j,2 )

The final binary descriptor db for d results from the 8-bit
strings of a chosen set of N pairs (℘ j,1, ℘ j,2) ∈ {0, . . . , M−
1}× {0, . . . , M −1} from the M subvectors of d, as follows:

db =
N⊕

j=1

β(d℘ j,1 , d℘ j,2) , (3)

where ⊕ stands for the concatenation of binary descriptors.
The binarization procedure is illustrated in Fig. 4.

SuperPoint generates a 256-dimensional descriptor, i.e.
D = 256, resulting into M = 32 subvectors dx , so that the
set of N ≤ (32

2

)
℘ j pairs leads to a binary descriptor db of

N ×8 bits. In this work, we assess three criteria for selecting
these pairs, since the chosen pairs affect the performance
of the LCD approach. For each case, we generate N = 32
and N = 64 pairs, which result into, respectively, 256- and
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512-bit binary descriptors. We briefly review each selection
method in the following.

The first proposal applies a dimensionality reduction
procedure to the original real-valued descriptor and, then,
combines all-against-all possible pairs from the resulting
subvectors. To this end, we make use of Gaussian Ran-
dom Projections (Dasgupta 2013) to transform the original
space into a simpler K-dimensional space. The conversion
is performed by means of a projection matrix R ∈ R

D×k .
Each entry is independently sampled from a standard normal
distribution N(0,1). In our experiments, we project Super-
Point descriptors onto 72 and 96 dimensions, which results
into, respectively, 9 and 12 subvectors dx per descriptor.
We choose all the possible pairs on each case, respectively(9
2

) = 36 and
(12
2

) = 66, discarding four combinations in the
first case –(0,1), (0,2), (6,8) and (7,8)– to reach the 32 pairs
of the final binary descriptor, and discarding two combina-
tions –(0,1) and (10,11)– to end with 64 pairs in the second
case. There is no particular reason for discarding these pairs,
except for the fact of involving the first and last components
of the descriptor in both cases.

As a second proposal, we consider one of the approaches
assessed by the BRIEF descriptor authors in Calonder et al.
(2010), which choose randomly the N pairs. In the seminal
work, this random criterion seems to provide better results
than the other pair selection schemes considered. We thus
generate two random patterns of 32 and 64 pairs from all the
possible combinations of M subvectors.

As a third alternative, we propose a novel but simple
method to produce the corresponding N pairs. To gener-
ate a 256-bit descriptor, each subvector dk is paired with
its neighbours {dk−1, dk+1}. Similarly, the 512-bit descrip-
tor is computed using the two nearest neighbours of dk , i.e.
{dk−2, dk−1, dk+1, dk+2}. For the 256-bit case, in practice,
one has to consider pairs (dk, dk+1), k = 0 .. 30, together
with pair (d31, d0),1 for a total of 32 pairs. For the 512-bit
case, one has to consider the previous 32 pairs and pairs
(dk, dk+2), k = 0 .. 29, together with (d30, d0) and (d31, d1),
for a total of 64 pairs.

As is shown in Sect. 4.2, this last approach is the one
leading to the best performance. To finish, we denote the
final set of binarized descriptors as Pt .

3.1.2 Line description

Lines are detected in the image using the Line Segment
Detector (LSD) (Grompone von Gioi et al. 2010). LSD is
a linear-time high-precision line segment detector with sub-
pixel accuracy without parameter tuning. However, LSD
tends to break long line segments into shorter segments
or even duplicated segments. The existence of these repli-

1 Considering the SuperPoint descriptor as a circular vector.

cas often affects the matching procedure and increases the
storage requirements. To minimize the incidence of these
misbehaviours, we perform a line merging step after seg-
ment detection. Formally, each line segment k is represented
by its start point sk and its end point ek in homogeneous coor-
dinates. The direction vector l for segment k is thus given by:

lk = sk − ek
‖sk − ek‖ . (4)

For segment merging, we consider every possible pair of
lines (li , l j ). Lines are merged if the minimum Euclidean
distance for the four possible combinations of end-points is
smaller than a threshold and the angle between line-segments
θi j , computed as

θi j = arctan

⎛

⎝

∥∥∥
−→
li × −→

l j
∥∥∥

−→
li · −→

l j

⎞

⎠ , (5)

is close to 0 or π radians.
Similarly to LiPo-LCD (Company-Corcoles et al. 2020),

the lines found are described using the binary formof theLine
BandDescriptor (LBD) (Zhang andKoch 2013), conforming
the final set of binary line descriptors Lt .

3.2 Searching for loop closure candidates

Similarly to our earlier work (Company-Corcoles et al.
2020), we make use of a hierarchical tree structure to effi-
ciently retrieve loop closure candidates, what allows us to
manage an increasing number of visual words, i.e. online
operation. To this end,we employOBIndex2 (Garcia-Fidalgo
and Ortiz 2018) as an incremental BoW scheme for binary
descriptors. In combination with an inverted index, it allows
for fast image retrieval.

More precisely, LiPo-LCD++ maintains two instances of
OBIndex2, one for point features and another one for line fea-
tures. Each instance builds an incremental visual vocabulary
jointly with an inverted index of images. For a given query
image It , a search is performed on each index to retrieve the
most similar images with regard to each visual perspective.
To this end, we search each visual feature descriptor within
its corresponding dictionary to find the closest visual word.
Next, using the inverted index, a list of images where the
visual word has been observed is retrieved, and, for each one,
a TF-IDFweight is added to the final score of the image. Can-
didate images are then sorted according to this final score. For
a further explanation, the reader is referred to Garcia-Fidalgo
and Ortiz (2018).

As a result, two lists are obtained: (1) the m most simi-
lar images using point features Ct

p = {I tp0 , . . . , I tpm−1
} and

(2) the n most similar images using line features Ct
l =
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{I tl0 , . . . , I tln−1
}. Each list is sorted by the associated scores,

respectively stp(It , I
t
j ) and s

t
l (It , I

t
j ), whichmeasure the sim-

ilarity between the query image It and each candidate image
I j . Since the range of these scores varies depending on the
distribution of visual words in each vocabulary, wemap them
onto a common range [0, 1] by applying min-max normal-
ization given by:

s̃tk

(
It , I

t
j

)
=

stk

(
It , I

t
j

)
− stk

(
It , I

t
min

)

stk
(
It , I tmax

) − stk
(
It , I tmin

) , (6)

where stk
(
It , I tmin

)
and stk

(
It , I tmax

)
correspond, respec-

tively, to the minimum and the maximum scores of an image
candidate list, being k ∈ {p, l}. To keep control of the size
of the list of candidates for a specific feature Ct

k, k ∈ {p, l},
images whose normalized score s̃tk is lower than a predefined
threshold are discarded. Finally, the respective visual vocab-
ularies are updated accordingly to the set of point and line
binary descriptors resulting from the current image.

3.3 Fusion of the lists of candidates

The next step is to integrate both lists Ct
p and Ct

l , each one
providing loop candidates fromadifferent visual perspective,
into a joint list of similar images Ct

pl .

3.3.1 Overview

Techniques that combine multimodal information for image
retrieval can be generically classified into early or late fusion
approaches (Bhowmik et al. 2014). Early fusion refers to the
combination of the information at the feature descriptor level,
before being processed by a retrieval system.Conversely, late
fusion works with the outputs of different retrieval systems.
Regarding the latter, a common approach is to aggregatemul-
tiple ranked lists, corresponding to different visual features,
using a function that provides a global confidence measure.
This function can be implemented in several ways: (1) using
a ranked-voting procedure that considers the position of each
candidate in the list for each retrieval system; or (2) using a
score-based method that combines the candidates by weigh-
ing them according to the importance of each visual feature
in the query image. In a previous work (Company-Corcoles
et al. 2020), we adopted a ranked-voting scheme where each
candidate was scored inversely proportional to their position
in the list. Despite its good performance, this scheme did
not take into account the relevance, or even the existence, of
each visual feature in the query image, preventing the use of
information that could certainly be used to fit the approach
with dynamic adaptation to each case.

To this end, in this work, we adopt a query-adaptive late
fusion approach which exploits a score-based method to

leverage the information coming from both sorts of visual
features. Particularly, we propose a late fusion approach
based on the work by Zheng et al. (2015), where the impor-
tance of a visual feature for a query image can be attributed
to the shape of the curve of the resulting scores, sorted in
descending order. To be more precise, they argue that this
curve is L-shaped for a good feature, indicating that a small
portion of the database images attain a high score, while
a bad feature distributes the scores along more database
images. LiPo-LCD++ accounts for this behaviour essentially
by means of the calculation of the Area Under the Curve
(AUC) of the scores curve, to compute adaptively the impor-
tance of each feature for each query image. The details for
this computation can be found next.

3.3.2 Computation of feature relevance

Following the aforementioned ideas, we propose to com-
pute the importance of each visual feature, for a given query
image, according to the AUCs of the sorted scores of lists
Ct
k, k ∈ {p, l}. Formally, we denote fk as the curve of the

corresponding normalized scores s̃tk , i.e. fk( j) = s̃tk(It , I
t
j )

for a specific image candidate j . As a first step, each curve
fk is analysed to detect and remove flat tails, i.e. detecting
when the curve stops decreasing. To this end, we compute a
linear approximation, from lower to higher scores, for each
pair of consecutive points of the curve. Then, the analysis is
finished when the magnitude of the resulting slope is above
a threshold, discarding the remaining candidates and lead-
ing to a shorter curve f̃k . Assuming that the final number
of candidates is Ck , its AUC, denoted by Ak , is calculated
by integrating f̃k using the composite trapezoidal rule using
equally-sized partitions over the interval [0,Ck − 1]:

Ak ≈
⎛

⎝
Ck−2∑

n=1

f̃k(n) + f̃k(Ck − 1) + f̃k(0)

2

⎞

⎠ . (7)

Once the AUC for points Ap and lines Al has been calcu-
lated, the weights for point features wp and line features wl

are given by:

wp =
1

Ap

1

Ap
+ 1

Al

, wl = 1 − wp. (8)

We use the inverse of Ak to score higher smaller areas and
so capture better the L-shape.
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Fig. 5 (left) f̃ p and f̃l curves, in, respectively, green and blue colour.
The red segments correspond to the removed candidates for each case.
(right) Selected and rejected frames to compute Ak on each case. Frame

numbers are in black for hits and in red for failures, and as green/blue
dots on the left plots (Color figure online)

3.3.3 Combination of scores

Weights computed in the previous step are used to leverage
scores of image candidates from the different visual perspec-
tives, resulting into a global confidence measure. Among the
different options considered to consolidate these scores in
Zheng et al. (2015), we use the sum rule given its better
tolerance to false positives. Therefore, we compute a joint
similarity measure St (It , I tj ) between the query image It and
a candidate image I tj as:

St (It , I
t
j ) = s̃tp(It , I

t
j ) · wp + s̃tl (It , I

t
j ) · wl . (9)

Finally, an integrated image list Ct
pl is obtained by sorting

the resulting candidates according to their integrated scores
St (It , I tj ).

Figure 5 illustrates the above-described merging proce-
dure with an example. Curves f p and fl for, respectively,
feature points and feature lines are shown on the left, while
the respective images are shown on the right. The images
involved in the calculation of Ap and Al correspond to the
ends of the blue and green segments of the f̃k curves (for,
respectively, lines and points). Removed image candidates
for each case are shown as the ends of the red segments.
Black captions below the images on the left denote correct
loop closures (according to the ground truth), labelled with
a coloured dot on the left curves, whereas captions for non-
correct loop closures are shown in red.As a result of thewhole
process, for this particular case, wp = 0.46 and wl = 0.54,
indicating that the importance of each feature, for the exam-
ple query image, is almost the same, as the f̃k curves already
suggest. It can also be observed from this figure that dis-
carded images are mostly incorrect loop closure candidates,
while the selected frames to compute Ak are almost the same
in both cases. It can also be noticed that, in this example,
points are more affected by perceptual aliasing than lines.

3.4 Dynamic islands computation for loop
candidates filtering

After merging the resulting listsCt
p andC

t
l intoC

t
pl , we filter

Ct
pl to prevent that images coming from the same area com-

pete among them as final loop candidates. To this end, we
make use of the concept of dynamic islands (Garcia-Fidalgo
and Ortiz 2018). A dynamic islandΥ m

n groups images whose
timestamps range from m to n. The size of an island is not
fixed, but it depends on the similarities between neighbouring
images and the camera velocity, to adapt to the specific image
stream. For each query image It , a set of islands Γt is cal-
culated processing images in the list Ct

pl in ascending order
by using the following procedure. Every image Ii ∈ Ct

pl that
lies in the [m, n] interval is associated to an existing island
Υ m
n ; in such a case, the time interval of the island is updated

to accommodate It and some previous and posterior frames.
It is associated to a new island created around time t if It
does not fit in any existing island. Note that this procedure
relies on a sorted list of images.

After processing all images in Ct
pl , a global score g is

computed for each island as:

g(Υ m
n ) =

n∑

i=m

St (It , I
t
i )

n − m + 1
, (10)

which is an indicator of how similar an area of the environ-
ment is with regard to the query image, taking into account
the two visual perspectives. We also rely on the idea of pri-
ority islands, defined as the islands in Γt that overlap in time
with the island selected at time t − 1, Υ ∗(t − 1). The ratio-
nale behind these islands is based on the fact that consecutive
images should close loops with areas of the environment
where previous images also closed a loop. Originally, the
authors of Garcia-Fidalgo and Ortiz (2018) selected, as a
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final island, the priority islandwith the highest score g, if any.
However, they did not consider the spatial arrangement of the
features and the fact that perceptual aliasing might produce
incorrect island associations, especially in human-made envi-
ronments. For this reason, as an alternative, LiPo-LCD++
retains an island for the next time instant if the final selected
loop candidate satisfies the spatial verification procedure, as
explained in Sect. 3.5. Then, when the best island Υ ∗(t) is
determined, the image Icwith the highest combinedweighted
score St of Υ ∗(t) is selected as its representative and passed
to the next spatial verification stage.

3.5 Spatial verification

One of the main drawbacks of BoW schemes is that they
ignore the spatial arrangement of visual words in the image.
Under severe perceptual aliasing conditions, this might lead
to produce incorrect loop associations which can be detected
by checking whether some minimal physical constraints on
the camera motion are satisfied or not. Therefore, a spatial
verification step usually takes place to validate the loop can-
didate. Themostwidely used approach in this regard assumes
a rigid motion from the camera and verifies if the motion of
image features is compatible with epipolar geometry com-
puting the fundamental matrix within a robust estimation
framework, e.g. RANSAC-based, and requiring a mini-
mum number of inliers. However, RANSAC performance
decreases, either when the number of outliers becomes large,
or when the camera motion cannot be modeled by means of
the fundamental matrix (Ma et al. 2019). Other approaches
(Zheng and Doermann 2006; Bian et al. 2017; Lowry and
Andreasson 2018; Ma et al. 2019) tackle these limitations
by the evaluation of neighbourhood points. Among them,
Grid-based Motion Statistics (GMS) (Bian et al. 2017) and
Locality Preserving Matching (LPM) (Ma et al. 2019) per-
form thematching task in an affordable time.However, unlike
GMS, LPM avoids that various motion models, particularly
when the number of detected features is low, affect the per-
formance. This is the reason why we adopt LPM as a key
component in the spatial verification step of LiPo-LCD++.

LPM is based on the fact that the truematches from a list of
candidate matches should maintain the spatial neighborhood
relationships among image features, i.e. should preserve the
topological structures of the scene. In this work, we modify
LPM by incorporating line matches into the procedure.

3.5.1 Feature matching

The first step is to find a set of consistentmatches between the
query and the candidate images. In our approach, we perform
a separate matching procedure for points and lines. On the
one hand, matchings between the point descriptor sets Pc, for
a candidate image Ic, and Pt , for the query image It , are val-

idated using the Nearest Neighbor Distance Ratio (NNDR)
test (Lowe2004).However, in our experiments, this approach
has not led to adequate performance for lines when using
a restrictive ratio, especially in low-textured environments.
Instead, we propose, for lines, to combine appearance and
geometrical information into the matching process. Firstly,
segments are matched by their appearance. Next, geometric
properties of lines are used to further filter the initial set of
matches. The details can be found in the following.

Given Lc and Lt as the sets of line descriptors for, respec-
tively, a candidate image Ic and the query image It , we first
obtain an initial set of appearance-based line matches by
applying the NNDR test, but with a more permissive thresh-
old than for points. Next, we discard those matching pair
segments whose lengths change significantly from one frame
to the other. For this purpose, we calculate the ratio length
μi j for every candidate matching pair (li , l j ), as

μi j = max
(‖si − ei‖ ,

∥∥s j − e j
∥∥)

min
(‖si − ei‖ ,

∥∥s j − e j
∥∥) . (11)

Matching candidates with similar lengths, i.e. μi j ≈ 1, are
accepted.

Subsequently, we asses whether the angle θi j between the
two line segments, calculated using Eq. 5, is approximately
0 or π . To avoid that camera rotations between images affect
this step, θi j is compensatedusing theglobal rotationbetween
frames, as performed in Zhang and Koch (2013). Surviving
line matches are considered for the local neighborhood eval-
uation.

3.5.2 Local Neighborhood Consistency Assessment

Once the set of putative matches for each feature are gener-
ated,we assess their consistency for their local neighborhood.
For this purpose, we propose amodification of the LPMalgo-
rithm, which we will name as LP-LPM from now on, as it
combines points and lines. This combination has shown to
be able to enhance thematching performance in low-textured
environments, where the performance of LPM usually drops.
As it is explained in Ma et al. (2019), the distance between
two feature points may vary under viewpoint changes, but
local neighborhood structures should be similar. The gen-
eration of these local neighborhood structures unfortunately
degrades when the number of detected features is low. Com-
bining points and lines however allows for an increasing
number of features over the image and leads to a better esti-
mation of such structures.

For a start, point matches are incorporated into the LP-
LPM scheme as usual, while line matches are introduced
as point correspondences relating their particular endpoints
si and ei for, respectively, the start and the end of the line
segment. First, for every line matching pair (li , l j ), we deter-
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Table 1 Features of the datasets involved in the experiments

Dataset Description Image size Number of images

CityCentre (CC) Urban, dynamic 640 × 480 1237

EuRoC Machine Hall 05 (EuR5) Industrial, low-textured, highly dynamic 752 × 480 2761

KITTI 00 (K00) Urban, dynamic 1241 × 376 4551

KITTI 05 (K05) Urban, dynamic 1241 × 376 2761

KITTI 06 (K06) Urban, dynamic 1241 × 376 1101

Lip6Indoor (L6I) Indoor, low-textured, perceptual aliasing 240 × 192 388

Lip6Outdoor (L6O) Urban, dynamic 240 × 192 1063

Malaga 2009 Parking 6L (MLG) Parking, perceptual aliasing 1024 × 768 3474

mine the resulting point correspondences according to the
value of the compensated angle θi j . If θi j is approximately 0,
the line segments can be considered to have the same direc-
tion, and, therefore, we can add the point correspondences
(si , s j ) and (ei , e j ) to the LP-LPM framework. In case θi j
is approximately π , the line directions result to be opposite
vectors and, hence, pairs (si , e j ) and (ei , s j ) are used as cor-
respondences. Next, LP-LPM proceeds generating two sets
of inliers. We consider a line match as an inlier if at least one
of its matched endpoints has been regarded as an inlier by
LP-LPM. Finally, the selected loop candidate Ic is validated
as a loop closure if the total number of inliers, comprising the
inliers for both features, is above a threshold. It is discarded
otherwise.

4 Experimental results

In this section, we conduct a set of experiments on several
publicly available datasets to evaluate the performance of
LiPo-LCD++. We also compare our solution with a repre-
sentative set of state-of-the-art approaches. All experiments
have been run on an Intel Core i7-9750H (2.60 GHz) pro-
cessor with 16 GB RAM. In addition, an Nvidia GeForce
GTX 980 GPU has been used to execute SuperPoint,2 using
a Python implementation on TensorFlow.

4.1 Methodology

We have selected 8 public datasets, which correspond to dif-
ferent environmental conditions: CityCentre (Cummins and
Newman 2008) (CC), EuRoC Machine Hall 05 (Burri et al.
2016) (EuR5), KITTI 00 (Geiger et al. 2012) (K00), KITTI
05 (Geiger et al. 2012) (K05), KITTI 06 (Geiger et al. 2012)
(K06), Lip6 Indoor (Angeli et al. 2008) (L6I), Lip6 Outdoor
(Angeli et al. 2008) (L6O) and the Malaga 2009 Parking 6L
(Blanco et al. 2009) (MLG). Table 1 provides a summary

2 https://github.com/rpautrat/SuperPoint.

of these datasets. For each one, we use the ground truth pro-
vided by the original authors except for theKITTI sequences,
for which we use the data referred by Arroyo et al. (2014),
and the EuR5 and MLG datasets, for which we use the data
available from Tsintotas et al. (2019).

Precision-recall (PR) metrics are used to evaluate the
global performance of every approach. Given that the aim
of an LCD method is to be used in a real SLAM solution,
false positives are considered critical. For this reason, we are
interested in the maximum recall at 100% precision.

Regarding LiPo-LCD++ parameters, we have used either
default values, or values which experimentally have resulted
in good performance. OBIndex2 and dynamic islands have
been configured as explained in Garcia-Fidalgo and Ortiz
(2018), as well as in our previous work (Company-Corcoles
et al. 2020). The maximum number of features for Super-
Point has been set to 1500. Line detection and description
methods have been executed using the default parameters.
The binarization of SuperPoint descriptors, apart from the
desired size of the final descriptor, does not require any addi-
tional setup. Regarding the query-adaptive late fusion stage,
the threshold for the segment slopes has been set to 0.025.We
have also limited the maximum value of weights wp and wl

to 0.8. Concerning the geometric spatial verification stage,
0.8 and 0.95 have been used as NNDR values for, respec-
tively, points and lines. Line matches have been discarded if
the ratio lengthμi j is above 2.5, and in case θi j deviates more
than 30◦ from 0 or π . LPM runs using the default parameters
provided by the authors.

4.2 Effectiveness of the binary descriptors

In this section, we assess the effectiveness of the bina-
rization procedure. We empirically evaluate the three con-
figurations for selecting pairs introduced in Sect. 3.1.1,
denoted by, respectively,All (A),Random (R), andNeighbors
(N). For each configuration, we consider the two possible
versions of 32 and 64 pairs, resulting into binary descrip-
tors of 256 and 512 bits, respectively. Additionally, we
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Table 2 Maximum recall at
100% of precision for the 7
descriptors considered. Winners
are indicated in bold face

A-256 A-512 N-256 N-512 R-256 R-512 Q-256

L6I 83.72 90.23 89.62 94.34 89.86 90.70 81.27

EuR5 72.57 79.28 81.15 86.12 72.73 79.87 67.25

also consider a less sophisticated method that quantizes a
256-dimensional SuperPoint descriptor by thresholding each
real-value component, hence resulting into a 256-bit descrip-
tor. The threshold for each component is chosen as the
average value of that component in the processed dataset.
In the following, we denote this method as Q-256.

The L6I and the EuR5 datasets have been chosen for this
experiment. L6I is a full indoor scenario which can be con-
sidered as a low-textured environment with high perceptual
aliasing.Conversely, EuR5 is also a low-textured indoor envi-
ronmentwhich presents scenes under severe illumination and
scale changes. To measure the effectiveness of each configu-
ration, we compute the maximum recall that can be achieved
by the whole system maintaining precision at 100%. Results
are shown in Table 2. The highest recall has been obtained
for the N-512 configuration for both datasets. As it is shown
later, the average time difference required per frame using
the N-256 and the N-512 configurations is approximately 7%
in the EuR5 dataset. Taking into account both performance
perspectives, we decide to adopt the configuration leading to
best PR.

4.3 LCD performance breakdown

In this section, we evaluate the net effect of the proposed
contributions to the final LCD performance. More precisely,
we compute what is the maximum recall obtained by LiPo-
LCD++ at 100% of precision, but using different alternatives
on each of the steps of our pipeline. Results are shown in
Table 3. For the Feature Extraction (FE) stage, we con-
sider ORB and our binarized SuperPoint descriptor (b-SP)
as point descriptors, along with the LBD descriptor for lines.
Regarding the Late Fusion (LF) options, we consider: (1)
our previousBordaCount-based system (Company-Corcoles
et al. 2020) and (2) the Query-Adaptive Late Fusion (QALF)
method proposed in this work. Finally, RANSAC and the
proposed LP-LPM are the choices studied for the Spatial
Verification (SV) stage. The L6I dataset is selected for this
experiment because it only contains indoor scenes and there-
fore it can be regarded as the most low-textured dataset
considered in this work. As it can be observed, every contri-
bution improves a specific part of the pipeline, which results
into a slightly increase of the final recall. Overall, the new
pipeline exhibits enhanced performance with regard to our
previous contributions: 11.16% over the recall reported in
Garcia-Fidalgo and Ortiz (2018), where only points were

Table 3 Maximum recall at 100% of precision for L6I. † and 
 respec-
tively refer to the solutions described inGarcia-Fidalgo andOrtiz (2018)
and Company-Corcoles et al. (2020)

FE LF SV Recall

ORB† – RANSAC 83.18

ORB + LBD
 Borda Count RANSAC 85.24

ORB + LBD QALF RANSAC 86.11

ORB + LBD QALF LP-LPM 90.61

b-SP – RANSAC 90.52

b-SP + LBD Borda Count RANSAC 90.81

b-SP + LBD QALF RANSAC 92.13

b-SP + LBD QALF LP-LPM 94.34

Fig. 6 PR curves for each dataset. In all plots, P is 1 for R below 0.75

used, and 9.1% that reported in Company-Corcoles et al.
(2020), which involved both point and line features.

4.4 General performance

This section focuses on the global performance of LiPo-
LCD++. We measure the accuracy of loop closure detection,
and we report on the computational times as well as on the
evolution of the vocabulary size.

4.4.1 LCD accuracy evaluation

Figure 6 reports on the accuracy of loop closure detection
of LiPo-LCD++ for all datasets. As usual, we employ PR
curves, which result from modifying the threshold on the
total number of inliers required to accept a loop. As can be
observed, LiPo-LCD++ exhibits a stable behaviour for all
datasets, achieving high recall valueswhile keeping precision
at 100%.
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Table 4 Average response time (ms) per image, calculated for each
stage of the pipeline. These times were computed using the K00 dataset

FE VU SC SV

Points (P) 9.58 183.87 145.07 –

Lines (L) 17.60 22.60 18.69 –

P+L 18.98 201.32 161.45 24.77

4.4.2 Computational times

Average computational times are summarized in Table 4.
These values have been computed from theK00dataset, since
it is the largest one considered in this work. Feature Extrac-
tion (FE) includes line and point detection and description,
as well as the proposed binarization procedure for points
using theN-512 configuration. On average, point FE requires
about 9.58 ms per image, from which only 1.96 ms corre-
sponds to the binarization of point descriptors. These times
are remarkably low in contrast to the 457 ms required by, for
instance, D2-Net (Dusmanu et al. 2019) and the 542 ms of
R2D2 (Revaud et al. 2019), involving only feature detection
and the generation of real-valued descriptors. The Vocabu-
lary Update (VU) and Search for Candidates (SC) steps are
usually slower for points than lines, due to the higher num-
ber of descriptors that have to be handled. Times required to
merge candidate lists and select dynamic islands are included
in SC because they are almost negligible. Finally, the Spatial
Verification (SV) step only makes sense when both points
and lines are jointly computed. The average response time
per image of the whole pipeline turns out to be 406.52 ms
in a multi-thread implementation, where points and lines are
each processed within a separate thread.

The evolution of computational times as more images are
processed is additionally illustrated in Fig. 7. We also use the
K00 dataset for this assessment, for the same reason as above.
As can be observed, times for VU and SC remain relatively
stable over time (remember that our approach implements a
dual incremental BoW scheme). SV times grow occasionally
due to the amount of inliers required to validate these candi-
dates within the LP-LPM scheme. If required for a specific
application, the number of candidates can be reduced.

4.4.3 Evolution of the vocabulary size

As stated previously, LiPo-LCD++ makes use of two
vocabularies, one for point features and one for line features,
that store visual words of, respectively, 512 and 256 dimen-
sions. Figure 8 shows that (1) globally the number of visual
words grows as more images have been processed, and (2)
the amount of line features is considerably lower than the
number of point features, both (1) and (2) as expected. (The

Fig. 7 Evolution of the computational times for each part of the pipeline
using the K00 dataset

Fig. 8 Evolution of the vocabulary size for each feature. The amounts
of point and line features are respectively denoted by continuous and
dashed lines

L6I dataset is missing in the plot because of the significantly
lower number of images it consists of.)

4.5 More on the computational requirements

In this section, we evaluate the effect of two strategies to
save computational resources on the performance of LiPo-
LCD++, to contemplate the possibility of running it on
computationally-restricted hardware (otherwise, one may be
interested in achieving the highest performance in terms
of recall). More precisely, among other alternatives (Zaffar
et al. 2020), we first assess how reducing the map affects
the performance of LiPo-LCD++. To this end, we consider
a simple method, denoted by Map Size Reduction (MSR),
which, using the N-512 configuration as a basis, processes
one out of every two images of the input dataset. A sec-
ond strategy focuses on limiting the vocabulary size. For this
purpose, we reduce the number of point features extracted
from each image using the relevance measure available for
SuperPoints; we consider 1000, 750, 500 and 250 features
per image. Regarding the vocabulary for line features, we
do not care for its size since it is negligible in contrast with
that of point features. The results in terms of vocabulary size
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Fig. 9 Comparison of vocabulary size and running times for different
strategies to reduce the computational requirements of LiPo-LCD++.
Default corresponds to the proposed approach using the N-512 descrip-

tor and 1500 point descriptors per image. MSR stands for Map Size
Reduction, while the rest of cases refer to the maximum number of
point descriptors requested per image

and computational times are detailed in, respectively, Fig. 9a
and b. The corresponding recall values at 100% of precision
for the different datasets can be found in Table 5.

As can be observed in Fig. 9a, the vocabulary size required
by MSR is similar to the one resulting when using 500 point
descriptors. However, the computational times reported in
Fig. 9b demonstrate that MSR leads to similar running times
than using 1000 or 1500 point descriptors per image.

Regarding the reduction of the map size reported in
Table 5, it can be observed that the recall is dependent on the
frame rate/camera speed, e.g. for datasets with higher frame
rate or low camera speed, better performance is exhibited. On
the other side, the recall tends to decrease when using less
point features per image. However, despite this reduction,
results for K00, K06 and L6O keep similar for all configura-
tions. Another relevant observation is that using 750 or 1000
descriptors per image achieves similar performace than using
the default configuration, i.e. 1500 descriptors, inmost cases.
Regarding L6O, the number of features that are detected is
nomore than 700, this is the reasonwhy the recall is the same
for the 750, 1000 and 1500-point features cases. As for L6I,
no more than 250 features can be found, reason by which it
is missing in Table 5.

4.6 Comparison with other solutions

In this section, we compare the performance of LiPo-
LCD++ against other state-of-the-art solutions. The maxi-
mum recall achieved at 100% of precision for each approach
is summarized in Table 6. The reported results come from

Table 5 Maximum recall at 100% of precision for different configura-
tions regarding computational complexity. Default corresponds to the
proposed approach using the N-512 descriptor and 1500 point descrip-
tors per image. MSR stands for Map Size Reduction, while the rest of
cases refer to the maximum number of point descriptors requested per
image

CC EuR5 K00 K05 K06 L6O MLG

Default 92.22 86.12 98.08 93.68 99.62 96.81 79.96

1000 90.62 81.62 97.98 87.33 99.15 96.81 74.25

750 89.35 82.08 94.85 89.69 99.26 96.81 75.97

500 87.98 77.53 94.47 89.05 99.05 93.33 73.82

250 80.25 71.20 94.59 86.43 99.62 91.56 69.81

MSR 89.39 69.25 97.41 89.52 99.12 90.07 65.29

the original works, except for Gomez-Ojeda et al. (2019),
which was executed by ourselves using the vocabularies and
the default parameters provided by the authors, and Tsintotas
et al. (2018); Tsintotas et al. (2019, 2021) for the L6I dataset.
Non-available recall values are reported as n.a. Approaches
that do not reach 100% precision for a specific dataset are
indicated by a dash (−).

As can be observed, the combination of points and lines
achieves the highest recall for almost all datasets. This is
specially evident for the case of L6I and Eur5, which are
regarded as the most low-textured scenarios considered in
this work, which actually is the focus of our approach. Fur-
thermore, the incorporation of lines in an LCD method not
only improves the performance in low-textured scenarios, but
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Table 6 Maximum recall at 100% precision for several off-line approaches (top), on-line approaches (middle) and LiPo-LCD++ (bottom). The
best and the second best scores are shown in bold and italic, respectively

CC EuR5 K00 K05 K06 L6I L6O MLG

Bampis et al. (2018) 71.14 23.10 96.53 97.30 80.10 52.22 58.32 87.56

Galvez-López and Tardos (2012) 31.61 n.a. 72.40 51.90 89.7 n.a. n.a. 74.75

Mur-Artal and Tardós (2014) 43.03 n.a. n.a. n.a. n.a. n.a. n.a. 81.51

Cummins and Newman (2011) 38.77 n.a. 49.20 48.50 55.34 n.a. n.a. 68.52

Gomez-Ojeda et al. (2019) n.a. 1.64 75.91 72.66 56.92 n.a. n.a. n.a.

Han et al. (2021) 33.45 n.a. 91.45 86.51 n.a. n.a. n.a. 72.51

Yue et al. (2019) 91.00 n.a. 97.00 93.00 98.00 n.a. n.a. 90.00

Tsintotas et al. (2019) 20.00 83.70 97.50 92.60 98.10 – 50.00 85.00

Tsintotas et al. (2018) 16.30 69.20 93.20 94.20 86.00 – 12.00 87.90

Tsintotas et al. (2021) 36.00 85.00 97.70 94.30 98.10 4.09 78.00 87.90

Angeli et al. (2008) n.a. n.a. n.a. n.a. n.a. 36.86 23.59 n.a.

Zhang et al. (2016) 41.18 n.a. n.a. n.a. n.a. n.a. n.a. 82.60

Gehrig et al. (2017) n.a. 71.00 93.10 94.00 n.a. n.a. n.a. n.a.

Khan and Wollherr (2015) 38.92 n.a. n.a. n.a. n.a. 41.74 25.58 78.13

Garcia-Fidalgo and Ortiz (2018) 88.25 76.28 76.50 51.86 95.53 83.18 85.24 61.23

Company-Corcoles et al. (2020) 89.30 81.94 97.80 91.73 97.38 85.24 97.31 75.73

LiPo-LCD++ 92.22 86.12 98.08 93.68 99.62 94.34 96.81 79.96

also in the rest of datasetswhere line segments are noticeable.
This can be observed when comparing either LiPo-LCD++
or Company-Corcoles et al. (2020), which also combines
point and line features, with the method proposed in Garcia-
Fidalgo and Ortiz (2018), where only point features are used.
Notice that LiPo-LCD++ improves the performance attained
by our previous solution (Company-Corcoles et al. 2020)
for these low-textured datasets, and provides a competitive
performance for the remaining datasets. Furthermore, LiPo-
LCD++ obtains better recall values almost for every dataset
compared to the solutionbyYueet al. (2019),whichdescribes
the images using a non-binarized version of the SuperPoint
descriptor. Despite LiPo-LCD++ achieves better recall val-
ues than our previous solution in the MLG dataset, the
performance attained is rather low with regard to other more
successful approaches. We have observed that this can be the
result of wrong line detections between consecutive frames,
which are due to the bad quality of the images and the corre-
sponding perceptual aliasing that occurs among those lines,
leading to a subsequent decrease in the pipeline performance.
Notice that our proposal also outperforms (Gomez-Ojeda et
al. 2019; Han et al. 2021), which are the solutions most sim-
ilar to LiPo-LCD++, given that they are the only ones that
combine points and lines for loop closure detection.

To finish, in Table 7, we compare the vocabulary size of
LiPo-LCD++ with other state-of-the-art solutions in terms
of memory consumption. As expected, the requirements for
LiPo-LCD++ are higher than the ones for a method that

only uses points (Garcia-Fidalgo and Ortiz 2018). This is
obviously because of the two visual vocabularies, but also
due to the fact that our binary point descriptor is 512-
dimensional, which is larger than the ORB descriptor used
by Garcia-Fidalgo and Ortiz (2018). Notice also that limiting
the number of point features to 1000 - 250 we reduce the gap
as for memory requirements with regard to Tsintotas et al.
(2021) without compromising much our LCD performance
(as reported in Table 5).

5 Conclusions and future work

This work has introduced LiPo-LCD++, an appearance-
based LCD approach that combines point and line features
to increase the performance in low-textured environments.
To search for loop candidates, our approach is based on two
instances of an incrementalBoWscheme specifically devised
for binary descriptors, one instance for each feature. Besides,
we develop a binarization procedure to incorporate Super-
Point into LiPo-LCD++ as a feature point extractor, given
the advantages of CNN-based methods recently reported.
A query-adaptive late fusion approach is also adopted to
merge lists of candidates obtained from the two visual per-
spectives. This fusion method is dynamically adapted to the
current operating scenario, leveraging the final candidate
scores according to the presence or absence of each kind of
feature. Finally, we introduce a spatial verification method,
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Table 7 Memory consumption
(Mb) for several state-of-the-art
approaches. Lowest values are
shown in bold

CC EuR5 K00 K05 K06 MLG

Gehrig et al. (2017) 44.6 83.0 166.2 101.0 40.2 126.9

Bampis et al. (2018) 30.5 30.5 30.5 30.5 30.5 30.5

Tsintotas et al. (2021) 0.5 3.1 8.3 4.8 1.9 6.8

Garcia-Fidalgo and Ortiz (2018) 2.8 13.5 29.2 16.9 6.4 24.5

LiPo-LCD++[Default] 11.4 23.9 71.22 44.4 16.2 36.2

LiPo-LCD++[1000] 7.6 15.8 48.5 29.4 11.1 34.0

LiPo-LCD++[750] 5.8 12.9 36.6 22.6 8.55 26.5

LiPo-LCD++[500] 4.1 9.5 26.1 16.0 6.1 18.4

LiPo-LCD++[250] 2.4 5.6 15.3 9.4 3.5 10.2

LiPo-LCD++[MSR] 3.9 8.6 29.5 18.2 6.6 15.2

which jointly validates the appearance and the geometric
consistency of points and lines together. LiPo-LCD++ com-
pares favourably with several state-of-the-art approaches for
different public datasets and hence different environmental
conditions.

Regarding future work, we plan to incorporate LiPo-
LCD++ into a SLAM framework and analyze its perfor-
mance in low-textured scenarios. We also plan to explore the
use of other geometric entities, e.g. planes, for loop closure
detection.
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