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Abstract

An autonomous robot needs to perform some tasks in order to be independent.
Some of these tasks require that the agent is able to locate itself in its environment. This
process is known in mobile robotics as localization and it can be achieved by different
ways according to the characteristics of the scenario where the robot is working.

One of this ways is that the robot use a world representation called map. There
exists several methods to represent the agent environment. A widely used option is
topological maps, where the world is modeled as an abstract graph with nodes which
represent locations, and links between them that indicate possible actions to take be-
tween two concrete nodes.

The process of construction of these maps is called mapping. A number of sensors
can be used to this end in order to obtain information from the environment. When a
camera is the selected option, visual information needs to be described and managed.
In this case, the quality of the mapping and localization processes depends on how
images are described.

Within this context, this work introduces, on the one hand, an appearance-based
method to create topological maps from a sequence of images; it also defines several
measures that permit assessing the performance of different visual descriptors for map-
ping and localization tasks. On the other hand, this work also comprises a comparison
of different view descriptors, involving real cases and different types of scenarios, and
using the aforementioned measures as the figures of merit.

As will be seen, the developed framework and the measures exposed in this report
can be easily extended and used to test more image descriptors in different environ-
ments. This work also shows a first mapping and localization approach in underwater
scenarios, not much explored yet.
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1. Introduction

An autonomous vehicle is a robot which is able to operate without receiving remote
orders. This kind of vehicles has a lot of applications, especially in scenarios under
unsafe conditions, potentially dangerous for humans. However, due to this autonomy,
these robots need to handle information from their environment to plan and perform
different tasks. An example of these tasks is localization.

The localization process is an important problem in mobile robotics. It can be
defined as the ability of a robot to locate itself within its environment to achieve tasks.
To this end, some applications use external infrastructures like the Global Positioning
System (GPS). However, those systems are not available in many places such as indoor,
underground and underwater environments, and localization must be solved internally
by the robot, using its own sensor information. In these cases, the agent builds its own
representation of the world using the available sensors and establishes a mechanism to
infer its position in it. The study of this process is called robot mapping.

The accuracy of these maps depends on the information needs of the application.
There exists three different paradigms for mobile robot mapping:

e Metric maps: This kind of maps represents the world as accurate as possible.
They maintain a lot of information about environment details, such as distances,
measures, sizes, etc. and they are referenced according to a global coordinate
system. The main drawbacks of this approach are the storage needs and the pro-
cessing time, which makes its use in some real time applications more difficult.

e Topological maps: This approach tries to generate an abstract representation of
the world, usually as a graph with nodes and links between them. Nodes rep-
resent environment locations with similar features and links are relationships or
possible actions to take between the different locations. These maps are sim-
ple and compact, and require much less space to be stored than metric maps.
However, they are not useful for tasks with accuracy needs, for example obstacle
avoidance.

o Hybrid maps: This last paradigm tries to maximize the advantages and minimize
the problems of each kind of map alone and combine them in a different mapping
technique.

Ultrasonic and laser sensors have been used for years to construct these maps. Nev-
ertheless, recently there has been a significant increase in the number of visual solutions
because of the low cost of cameras and the richness of the sensor data provided. Using
cameras permits us to obtain a visual representation of the robot’s world. To achieve
this goal, it is necessary to describe the acquired images and be able to compare these
descriptors. Consequently, the quality of the map and the posterior self-localization
will directly rely on the method used for visually describing the different environment
locations.

Many image detectors and descriptors have been proposed along the years. This
work focuses on comparing the performance of some of them to create topological
maps and localize images in it. For each one, a graph is created in memory from a



sequence of images according to the differences between consecutive frames. Then,
we determine, given a previously unseen image, what is the node it most likely comes
from. We also compare these images with a manually generated ground truth graph.
This allows us to assess the localization process in a common map for all descriptors,
since each image descriptor generates its own representation of the environment and
the number of nodes may vary. For every test, we obtain error rates and execution
times.

Map building and localization has been widely studied for indoor environments.
This is because these scenarios present common regularities and it is easier to extract
information from them. However, underwater scenes are most difficult due to the lack
of defined structures. Another goal of this work is, thus, to validate the suitability of
these descriptors in these unexplored scenarios.

The outline of this report is as follows. Section 2 reviews previous works related
to topological mapping, localization and image retrieval systems. Section 3 explains
the image feature detectors and descriptors used in this work. Section 4 introduces an
abstract model of topological maps and shows how these maps are built. Section 5
presents the experiments and metrics developed to test the efficiency of each descriptor
for mapping and localization. Section 6 shows experimental results for outdoor, indoor
and underwater environments. Finally, Section 7 concludes the report.

2. Related Work

A large number of solutions for topological map building and image retrieval can
be found in the scientific literature. These are areas of active research. The goal of this
section is not to make an exhaustive review of the proposed solutions, but to focus on
the last 15 years. For an extensive coverage, see [5].

Although most works are based on either topological maps or metric maps, some
authors have tried to make hybrid solutions, combining both paradigms in one. Thrun
[32] uses an artificial neural network to construct a grid-based model of the environ-
ment. On top of the grid representation, topological maps are generated by splitting
the metric map into coherent regions. In this work, topological maps are employed for
efficient planning while metric maps are used for scene recognition. Sonar sensors are
employed as the main source of information.

Winters and Santos-Victor [36] utilize an omnidirectional camera to create a topo-
logical map from the environment during a training phase. Nodes are sets of im-
ages with common features and links are sequences of consecutive views between
two nodes. The large image set obtained is compressed using Principal Component
Analysis, resulting in a low dimensional eigenspace from which the robot can deter-
mine its global topological position using an appearance-based method. Based on this
work, Gaspar et al [13] map an indoor environment and emulate insect vision-based
navigation capabilities. Similarly, Swets and Weng [30] use also Principal Component
Analysis and Multivariate Linear Discriminant Analysis to generate Most Expressive
Features (MEF) and Most Discriminant Features (MDF), respectively. They experi-
ment with these features for face recognition.

Both global and local image descriptors have been employed along the years for
object and scene recognition. The former typically consider the entire image to per-



Figure 1: Rhino.

form the description. The latter are based on local changes between adjacent pixels or
regions.

Global representations proposed in the past include responses to banks of filters
[34], multi-dimensional receptive field histograms [23] and various forms of color his-
tograms [35]. Local image descriptors comprise different forms of salient image points
or image regions: rotationally invariant features [17, 24, 25, 37], Fourier transforms of
salient image regions [27], etc.

Some authors have experimented with different descriptor types. For instance,
Kosecka et al [15] proposed a navigation strategy using gradient orientation histograms
as image descriptor. In an exploration phase, a topological map is built by comparing
successive frame descriptors. For each node, a set of representative views are computed
using Learning Vector Quantization. During the navigation, the current frame’s his-
togram is extracted and compared with each node representatives using the Euclidean
distance to determine the most similar location. Kosecka and Yang [14] have also
demonstrated the suitability of scale-invariant features for localization tasks. They em-
ploy SIFT [17] for this purpose and improve the localization phase using a Hidden
Markov Model.

Zivkovic et al [38] presented an algorithm for automatically generating hierarchi-
cal maps from images. A low-level map is built using SIFT features. Then they cluster
nodes to construct a high-level representation. Later, [7] showed a navigation system
based on a topological map which used the epipolar geometry to obtain a robust head-
ing estimation.

Museum guidance is one of most tested map-building applications. These robots
need to be autonomous in their tasks, such as recognizing people, guiding them through
the museum and avoiding obstacles. Because of the growing interest in this type of ve-
hicles, we are going to mention the main contributions in the following. RHINO [8]
was a robot deployed in the Deutsches Museum Bonn, where it guided a hundred of vis-
itors for six days (see Figure 1). Later, the same team constructed an improved version
of this robot called MINERVA [33]. This prototype was equipped with two cameras
and a laser sensor to build a complete map of the environment for the navigation pro-
cess. More recently, Shen and Hu [26] presented ATLAS, a museum guiding robot that
combines topological map building and appearance-based matching algorithms for lo-
calization. ATLAS also incorporates a human face detection algorithm used to actively
approach to new visitors.

Liu et al [16] described a new color based descriptor called FACT. They used it to



Figure 2: (a) Original image; (b), (c) Gradient images in x and y directions, respectively.

create a topological map and navigate through it. This descriptor is based on the fact
that, in indoor environments, the important vertical edges (windows, columns, etc.)
naturally divide the indoor environment into several meaningful cuts. Consequently,
for each cut, the average color value in the U-V space is computed. This U-V aver-
age value and the width of the region form the region descriptor. A scene descriptor
is formed concatenating each region descriptor in a vector. Scene matching between
new scenes and existing nodes was performed computing the 2D euclidean distance
between color descriptors and recursively comparing the widths of the regions accord-
ing to an empirically determined inequality. Every node was characterized with more
than one image.

Recent works [10—-12] are heading to the Bag of Words or Bag of Visual Words
representation. Bag of Words is a concept extracted from text retrieval that was first
applied to image search by Sivic and Zisserman [28]. This description quantizes a set
of image descriptors against a vocabulary of prototypical descriptors. The vocabulary is
learned by clustering descriptors from a set of training data. This quantization process
allows a high-dimensional descriptor (for instance SIFT) to be replaced as a single
integer. Images can now be represented as a short list of integers specifying which
visual words occurred in the image and how often they occurred.

Bacca et al [2] have proposed recently an innovative feature management approach
for topological map-building and localization, which is based on a human memory
model and implements concepts such as Short-Term Memory (STM) and Long-Term
memory (LTM). Using Feature Stability Histograms (FSH), their method can deal with
temporary occlusions and changes in illumination caused by dynamic environments.

To conclude this section, we highlight that: (1) although there exist works that try to
compare different image descriptors for various purposes and propose criteria to assess
the properties and performance of different features [3, 6, 19, 20], (2) none of them
show results for underwater scenarios.

3. Image Description

In this section, the image descriptors that are used in this work are described. The
main idea is to explain their essentials and the configuration used in our experiments.

3.1. Gradient Orientation Histograms

This is the only global image descriptor considered in this work. Among others, it
was applied by Kosecka et al [15] for navigation tasks. Our implementation and use in
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Figure 3: Overview of the DoG scheme, used by SIFT for the key point detection.

our tests is based on that paper. These orientation histograms are computed from the
gradient images G, and G,, which represent the gray value variations in the x and y
directions, respectively.

The edge image is also computed using the Canny detector. To calculate the his-
togram, we consider only pixels belonging to an edge whose magnitude is in the top
4%. For these egdes, orientation is quantized and accumulated into a 36 bin vector. As
a result, we have the gradient orientation histogram, which is normalized for compari-
son purposes.

In order to obtain better discrimination capability of this representation, we com-
pute the histogram for five sub-images: four quadrants and the central region. The final
image descriptor is formed concatenating the five sub-histograms into one. The case of
a single histogram for the whole image has also been considered.

We did not employ any external code to use this global descriptor. It has been fully
implemented by ourselves, using C++ language and the OpenCV'! library.

3.2. SIFT

The Scale-Invariant Feature Transform (SIFT) is an algorithm developed by Lowe
[17] to detect and describe distinctive key points in images which was originally created
for object recognition. These key points are invariant to image rotation and scale and
robust across affine distortion, noise and changes in illumination.

To obtain these key points, a scale space is generated convolving the original image
with Gaussian kernels at different scales. A set of Difference of Gaussians (DoG)
images is obtained subtracting the successive blurred images. Key locations are defined
as maxima and minima of the Difference of Gaussians that occur at multiple scales (see
Figure 3). Specifically, a DoG image is given by:

D (x,y,0) = L(x.y.kio) - L(x.y.k;cr) . (1)

where L (x,y, ko) is the convolution of the original image with a Gaussian kernel at
scale ko:

Thttp://opencv.willowgarage.com



Figure 4: Left to right: the Gaussian second order partial derivatives in y-direction and xy-direction, and
SURF approximations using box filters. The gray regions are equal to zero.

L(x,y, ko) =G (x,y,ko) = I(x,y) . 2)

Scale-space extrema detection produces too many candidates, some of which are
unstable. Therefore, the next step is to perform a filtering process using the quadratic
Taylor expansion of the DoG scale-space function and the eigenvalues of the second-
order Hessian matrix, resulting into a reduced set of key locations. This key point
detection is combined with a 128 dimensional descriptor, calculated on the basis of
gradient orientation histograms of 4x4 subregions around the interest point.

Once the key points have been detected and described, it is important to define an
efficient method to match these features in different views. Comparing one by one
is not a real solution, due to its inefficiency. Therefore, Lowe used a modification of
the k-d tree algorithm called Best-bin-first (BBF) search method that can identify the
nearest neighbors with high probability using only a limited amount of computation.
The nearest neighbors are defined as the points with minimum Euclidean distance from
the given descriptor vector.

In our case, we have tested the original SIFT algorithm. Each image is represented
by a set of SIFT descriptors and BBF over a k-d tree is used for feature search. SIFT
features and k-d tree implementations employed in this work come from Rob Hess?.

3.3. SURF

Speeded Up Robust Features is an image detector and descriptor presented by Bay
et al [4]. It is partly inspired by the SIFT algorithm but outperforms previous solutions
in terms of computation time.

The SUREF detector is based on the Hessian matrix, due to its good performance.
Given a point X = (x,y) in an image [, the Hessian matrix in x at scale o is defined as:

L (x,0) ny(X, o)

Hx =\ | xo) Lyxo) |°

(3)
where L, (X, 0) is the convolution of the Gaussian second order derivative ;—;G(O‘)
with the image I at point X, and similarly for the rest of terms. The determinant of this
matrix is used for selecting the location and the scale.

2http://blogs.oregonstate.edu/hess/code/sift/



Denoting the Hessian components by Dy, Dy, and D,,, the blob response at loca-
tion x in the image can be approximated by:

det(Hypprox) = DyxDyy + (0.6D ) . 4)

These responses are stored in a blob map, and local maxima are detected and refined
using the quadratic interpolation.

The Hessian is roughly approximated using a set of box-type filters (see Figure 4).
These approximations can be evaluated very fast, and independently of the image size,
using integral images:

IHxy) = )iy, 5)
X <x
y'<y
where i(x, y) is the input image. The 9 x 9 box filters in Figure 4 are approximations
for a Gaussian with o = 1.2 and represent the finest scale.

Descriptors show how the pixel intensities are distributed within the neighborhood
of each feature at different scales. The result is a 64 dimensional vector.

In our experiments, we have used the OpenCV SURF and k-d tree implementa-
tions. We have limited the amount of features for each image. Only a parameterized
number of points with the highest Hessian response have been considered to control
the description time per image.

3.4. FAST

Figure 5: Pixels examined by FAST detector.

Features from Accelerated Segment Test is a corner detector proposed by Rosten
and Drummond [22]. It is based on the SUSAN [29] detector.

FAST compares the intensity in a circle of 16 pixels around the candidate point (see
Figure 5). Initially pixels 1 and 2 are compared with a threshold, then 3 and 4 as well as
the remaining ones at the end. The pixels are classified, according to its intensity, into
dark, similar and brighter groups. An image point is a feature if a minimum of pixels
can be found on the circle of fixed radius around the point such that these pixels are
all brighter or darker than the central point. The feature descriptor consists of a vector
containing the intensities of the 16 pixels surrounding the point.

FAST has been reported as 30 times faster than a DoG detector, such as SIFT.
However, it is not invariant to scale changes and it depends on a predefined threshold.



Figure 6: Different spatial arrangements for computing BRIEF: G I: (x,y) = U —%, %); G II: (x,y) =

N, 71552); G II: x = N(O, %SZ),y ~ N(x, ﬁSz); G IV: (x,y) are randomly sampled from discrete
locations of a coarse polar grid introducing a spatial quantization; G V: Vi : x = (0,0)” and y takes all

possible values on a coarse polar grid containing the number of desired tests points; the patch size is § X S
pixels and the origin of its coordinate system is located at the center.

We have employed the original Rosten and Drummond implementation, adapted
to C++ language. As before, the number of features is specified to control the image
description time. The matching process between two images is performed comparing
all the features of the first image with all the features of the second one.

3.5. Star and BRIEF

The remaining cases considered correspond to the combination of different algo-
rithms for detection and description. In this section, we deal with the combination
consisting of Star as the feature detector and BRIEF as the feature descriptor.

Star is a feature detector developed by Willow Garage® and derived from CenSurE
(Center Surrounded Extrema) [1]. This last one uses center-surrounded bi-level filters
to approximate the Laplacian. The bi-level adjective means that they multiply the im-
age pixel values by either 1 or -1. Examples of filters are shown in Figure 7. The first
one is the most faithful to the Laplacian, but hardest to compute. To reduce execution
time, CenSurE replaces the two circles with squares (Figure 7d), easier to calculate
using integral images. For each pixel in the image, the filter response is calculated for
seven scales. Then, a non-maximal suppression is performed over the scale space and
weak features are discarded. Finally, unstable points on edges are suppressed examin-
ing each feature corner with the Harris measure under a 9x9 window. Meanwhile, Star
approximates the Laplacian with 2 overlapping squares: one upright and one 45-degree
rotated, and performs a sub-scale interpolation.

Binary Robust Independent Elementary Features (BRIEF) is a simple binary de-
scriptor created by Calonder et al [9]. The main goal of BRIEF is to speed up the

3http://www.willowgarage.com/
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matching process. The descriptor is a binary string, where each bit represents a simple
comparison between two points inside a patch in the image. A bit is set to 1 if the first
point has a higher intensity than the second. In the original work, the authors suggest
several point spatial arrangements over a key point centered path (see Figure 6). Ac-
cording to the authors, empirically, better results are obtained with point pairs randomly
drawn from uniform or Gaussian distributions of point coordinates. The Hamming dis-
tance is used for matching, taking the advantage of the XOR and bit-counting CPU
instructions.

As for the implementation, we have used the Star detector included in the OpenCV
library. For BRIEF, we employed the original code from the authors. The matching
process between two images is performed comparing all features of the first image with
all features of the second one. This is a very fast process due to the simplicity of the
BRIEF descriptor (16 bits).

4 - L \
&7 N0 (. | y 3 \\\
\ {\\ /) /) |\_] m ’\/\ v /,7’ neT
‘ \7//” \ 'y \\ 4
R 4n+1
(a) circles (b) octagons (c) hexagons (d) boxes
CenSurE Star

Figure 7: Bi-level filters used by CenSurE and Star

3.6. FAST and BRIEF

In this case, FAST is used to detect corners in the image and these ones are de-
scribed using BRIEF. All previous considerations for each case are still valid.

3.7. Star and FAST

The last image description tested in this work is again a combination of two previ-
ous techniques. Star is used as a key point detector and FAST as a descriptor.

4. Environment Model and Map Construction

This section exposes a general model of topological maps and explains the method
used for its construction.

4.1. Environment Model

First of all, it is important to establish what is a topological map for us. In general
terms, it is a graph-like representation of the environment, where nodes often represent
states in the agent’s configuration and links are system actions that take the agent from
one state to another. Despite this common use, there is not an agreement about what
really are or how they are built. Nevertheless, there have been authors who have tried
to establish a general theory of these maps [21].

11



In our approach, a node is a group of ordered images with similar features, which
represent a location in the environment. For each node, a subset of these images are
chosen as node representatives for scene recognition. The election of representatives
in the nodes is for computational reasons and to improve the stability of the process.
In the scene recognition phase, it would be very slow to compare the query image
with each frame in the location. Therefore, it is important to select a set of them, and
compare only these ones.

We do not use the above-mentioned concept of /ink and, thus, for now, our matching
method does not consider these relationships between nodes to improve the localization
process. Finally, for the time being, the map does not contemplate loops. Therefore, if
a node is revisited, it appears as a new node in the graph.

Given I = {I(1),...,I(m)} as an input sequence of m images, we define our topo-
logical map as an ordered sequence of nodes:

M ={N,,...,N}}, (6)

where [ is the number of nodes generated by the mapping process. Consecutive nodes
represent locations of the environment the robot has consecutively visited. Particularly,
the i-th node is defined as the following 2-tuple:

N;=({i,Ry), @)

where J; is the sorted sequence of images included in the location and R; the node
representatives. Formally:

Jiz{ji,lv"-’ji,n,‘}g{la""m}’ (8)

Ri={rit,....1ip} S Jisn; <mi, 9

where each j; and r; are indexes of the original sequence of images.
To generate the graph, we need to describe an image and be able to compare two of
them. Next sections formalize these concepts.

4.1.1. Image Description

A frame is represented by an image descriptor, which changes according to the
method used in each case. We denote it with the symbol A. In the case of the orientation
histograms, the descriptor is defined as follows:

ARG = thigs - higee . hig) (10)

where each h; ; represents the probability by which the angle a(j) = j x 3%0 appears in

the image. Observe that, if we are considering five sub-images, the final descriptor is
obtained concatenating the respective five histograms into one.

When the image is described by means of local features, the image descriptor is
defined as:

Af(](i)):{ﬁ,l"">ﬁ,5i}’ (11)
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where each f; is a feature descriptor, different for every case. Every feature descriptor is
usually constituted by a sequence of numbers. We assume that there is always available
a distance function to determine the dissimilarity between feature descriptors d¢(f;, f;).

4.1.2. Comparing Images

In order to compare two frames, we need to define a measure that quantifies how
similar or dissimilar two image descriptors are. These measures are called proximity
functions [31] and they are defined as follows:

piAXASR, (12)

where we generically denote by A the set of image descriptors produced by a given
description method.

This function definition derives in two cases: dissimilarity and similarity functions.
On the one hand, a dissimilarity function associates high values to low-similarity de-
scriptors: the less similar they are, the higher is the value. More precisely, it is defined
as:

dis: AXA—>R, (13)

where:
(1) ddp e R: —o0o < dp < d(x,y) < +00,¥x,y € A
(2) dis(x,x) =dp,Vx € A
(3) dis(x,y) = dis(y, x),Vx,y € A

On the other hand, a similarity function associates high values to very similar de-
scriptors: the more similar they are, the larger the value. More precisely, these func-
tions are defined as follows:

sim: AXA - R, (14)
where:
(1) dsp e R: —oc0 < s(x,y) < 59 < +00,Vx,y € A
(2) sim(x, x) = s9,Yx €A
(3) sim(x,y) = sim(y, x), Vx,y € A

This kind of measures have been used to compare two images in our model. We
will discuss about the details later in this document.

13
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Figure 8: Example of representative views in a location: mean image, first and last images, respectively.

4.1.3. The Election of Representatives

Another issue that comes from our model definition is how to elect the representa-
tives of a node. For this purpose, we define the fotal proximity of an image in a node
as:

P(i), Ny) = Zp(l(i), 1())), (15)
j=1

where n; is the number of frames of the node N;. We also define the mean image (Tk)
of the location as the image with the minimum or maximum total proximity, depending
on the measure used. In case of a dissimilarity function, it is defined as follows:

I = arg min {p((j), Np)} . (16)
1(j) . jen

When a similarity function is used as measure, the mean image is defined as:

I, = arg max {p(/(j), Ni)} a7
1(j) .jenk
The mean image denotes the frame of a location which is closer to the rest than the
other images. We do not define this function as the mean between descriptors because
the corresponding descriptor does need to correspond to a real, physically possible
image.
The accuracy of the localization process will directly rely on how we select these
representative views. In this work, three options have been considered:

o Get only the mean image.

o Get the mean image, the first and the last images in the node, according to the
order of the sequence.

o Get the n images with the best tofal proximity values.

The second option tries to summarize the variability of images inside a node. The
third one is the extension of the concept of mean image to a subset of node frames, so
that this subset comprises those images closest to the rest of images, in the sense of
total proximity defined before.

14



4.1.4. Constructing the Map

Once we have defined our model, we are ready to explain the method that has been
used to build a topological map. Initially, a sequence of images is taken using a camera.
Each frame is described (A) and compared (p) to the previous one. The result of the
proximity function is then evaluated against a threshold, adding the image to the last
location in the graph or creating a new node, as appropriate. This threshold depends on
the descriptor used for the test and vary for every case.

Despite the obvious visual similarity between consecutive images, it is possible
to obtain extreme distances between two of them, due to image noise or during fast
turns of the camera. Therefore, we can have nodes with few frames, irrelevant for the
localization phase. The next step is, thus, to refine the map, deleting the superfluous
nodes comprising a small number of images. An example of this situation is illustrated
in figure 9.

For each of the nodes surviving from the purging stage, their representatives are
calculated as indicated in section 4.1.3.

Terms view and location will be used interchangeably from now on to refer to nodes
of the topological map.

4.1.5. A Brief Note about the Internal Representation of the Maps
The internal representation of a map is the result of taking into account the follow-
ing:

o First of all, each frame is identified by its index within the input sequence.

e Second, due to the nature of the map construction process, which leads to split-
ting the input sequence into different segments, a map turns out to be an ordered
set of locations/segments.

e Third, due to the frame purging stage, some input frames results to be not as-
signed to any location in the map.

As a consequence of all the aforementioned, a map is internally stored as a vector of
locations, and each location is in turn represented as the vector containing the indexes
of the images that have been assigned to the corresponding map node.

This abstract representation is illustrated in Figure 10. First, the number inside the
boxes represent the index of the frame in the input sequenc